Making the switch to a safer CAR-T cell therapy

HaemaLogiX 2015

Technical Journal Club May 24th 2016

Christina Müller

- chimeric antigen receptor = CAR
- CAR T cells are generated by lentiviral transduction using a CAR construct
 - extracellular antigen recognition domain; scFV
 - hinge and transmembrane domain; CD8 hinge
 - intracellular signaling domain; CD3ζ

CAR design:

First generation:

no co-stimulatory domain \rightarrow limited efficacy, activation induced cell death, lack of T cell expansion First Second Third

- Second generation:
 - 1 co-stimulatory domain
 → enhanced proliferation
 and persistence
- Third generation:
 - 2 co-stimulatory domains
 → superior antitumor
 efficacy

Toxicities of CAR-T cell therapy:

Toxicity management in CAR-T cell therapy:

Baas 2014, SciBX:Science–Business eXchange

Conditional user-controlled switches

SYNTHETIC BIOLOGY

Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

Chia-Yung Wu, Kole T. Roybal, Elias M. Puchner, James Onuffer,* Wendell A. Lim*

ON-switch split CAR design:

- antigen binding domain and intracellular signaling domain are separately expressed polypeptides
- formation of a functional receptor complex requires heterodimerization of these polypeptides

Important features for the design of an ON-switch CAR:

- Receptor still needs to be dependent on specific tumor antigen

recognition, while small molecule or antigen alone should not activate

- Therapeutic activity should be titratable
- Timing of CAR T cell response should be reversibly controllable

- Heterodimerizing components:
 - FK506 binding protein (FKBP) domain
 - FRB* = mutant of FKBP-rapamycin binding domain

→ heterodimerization in the presence of the small molecule "rapalog"

- Screening of candidates in transduced Jurkat cells by looking at
 - activity of a synthetic promoter composed of multiple NFAT response elements

IL-2 secretion

ON-switch CAR design with different heterodimerization systems:

 CAR T cells with rapalog and gibberelic acid based dimerization systems are only activated in the presence of the targeted antigen **and** ON-switch molecule

Localization of ON-switch CAR components with and without rapalog:

- part I and part II co-localize at macroscopic level
- PALM (photoactivated localization microscopy) for analysis on single molecule level → both components are not physically associated in the absence of rapalog

 small molecule activation of CAR transduced primary human CD4⁺ T cells is titratable **Effectiveness of ON-switch CAR cells:**

Antigen-specific and titratable killing of target cell population

Effectiveness of ON-switch CAR cells:

Rapalog dependent killing of target cells by ON-switch CAR T cells in vivo

Summary ON-switch CAR cells:

 strategy to combine autonomous control with user control for engineering safer therapeutic immune cells

Pros:

- selective regulation in temporal and titratable manner
- this strategy requires no elimination of the therapeutic immune cells after treatment

 \rightarrow persistence and re-activation in case of relapse

Cons:

- small-molecule chosen (rapalog) showed suboptimal pharmacokinetic properties
- Single target based therapy \rightarrow risk of potential escape
- Distribution and localization of CAR-T cells and small-molecule switch?

Versatile strategy for controlling the specificity and activity of engineered T cells

Jennifer S. Y. Ma^{a,1}, Ji Young Kim^a, Stephanie A. Kazane^{a,2}, Sei-hyun Choi^b, Hwa Young Yun^{b,3}, Min Soo Kim^{a,4}, David T. Rodgers^a, Holly M. Pugh^a, Oded Singer^a, Sophie B. Sun^a, Bryan R. Fonslow^{c,d}, James N. Kochenderfer^e, Timothy M. Wright^a, Peter G. Schultz^{a,b,5}, Travis S. Young^{a,5}, Chan Hyuk Kim^{a,5}, and Yu Cao^{b,1}

^aDepartment of Biology, California Institute for Biomedical Research, La Jolla, CA 92037; ^bDepartment of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; ^cDepartment of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037; ^dSCIEX Separations, Brea, CA 92821; and ^eExperimental Transplantation and Immunology Branch, National Institutes of Health, National Cancer Institute, Bethesda, MD 20892

Switchable CAR-T cells:

- uncoupling of antigen recognition domain (scFv) and the CD8 hinge, CD3ζ part by the use of soluble intermediary switch molecules comprised of
 - > tumor targeting antibody or small molecule ligand
 - second part providing specific binding only to CAR

Rodgers et al. 2016, PNAS

Design and Synthesis of sCAR-T cell:

- Specificity redirection of CAR T cell by generating CAR T cells recognizing the synthetic dye FITC
 - full sequence of anti FITC-E2 scFv was inserted into a second generation CAR expression cassette

CART-19

anti-FITC CAR-T

- Switch based on Fab format using a anti-CD19-specific monoclonal Ab
- FITC conjugation of anti-CD19 Fab
 - site-specific
 - random
 - To study effect of FITC conjugation site on distance and geometry of the pseudoimmunological synapse

- Switch based on Fab format using a anti-CD19-specific monoclonal Ab
- FITC conjugation of anti-CD19 Fab
 - site-specific

Incorporation of noncanonical amino acids with bio-orthogonal chemical reactivity

- Switch based on Fab format using a anti-CD19-specific monoclonal Ab
- FITC conjugation of anti-CD19 Fab
 - site-specific

Incorporation of noncanonical amino acids with bio-orthogonal chemical reactivity

- Switch based on Fab format using a anti-CD19-specific monoclonal Ab
- FITC conjugation of anti-CD19 Fab
 - site-specific
 - random

Amine-reactive Crosslinker Chemistry

NHS Leaving Group

Effect of FITC conjugation on sCAR-T cells:

- Highly potent lytic activity for all constructs
- Anti-CD19-switch with FITC conjugations proximal to antigen binding region are more potent

Effect of FITC conjugation on sCAR-T cells:

Bivalent switches more potent than monovalent switches

→ site and number of conjugations affect CAR-T activity

Targeting of other tumor antigens (CD22) using the same sCAR-T cell:

- Anti-CD22-switch with FITC conjugations distal to antigen binding region are more potent
 - → distinct geometrics are required for each individual antigen-antibody interaction for optimal effector functions

Effectiveness of sCAR-T cells with optimized anti-CD19 AB-FITC switch

in vitro:

- Anti-FITC CAR-T cells in conjugation with optimized anti-CD19 AB switch are comparable to conventional anti-CD19 CAR-T cells
 - in electing tumor-specific effector functions
 - inducing costimulatory signaling

Effectiveness of sCAR-T cells with optimized anti-CD19 AB-FITC switch

 Anti-FITC CAR-T cells in conjugation with optimized anti-CD19 AB switch are able to clear tumor cells *in vivo* *In vivo* control of sCAR-T cell activity:

 Anti-FITC CAR-T cells in conjugation with optimized anti-CD19 AB switch can used to decrease the risk of tumor lysis syndrome *In vivo* termination of persistent B cell ablation by stopping of switch dosing:

mouse sCAR-T cell generated using splenocytes from C57BL/6 mice

 Repopulation of CD19⁺ cells in the peripheral blood upon termination of switch treatment → sCAR-T cell response can be "turned-off"

Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

David T. Rodgers^a, Magdalena Mazagova^a, Eric N. Hampton^a, Yu Cao^b, Nitya S. Ramadoss^{a,1}, Ian R. Hardy^{a,2}, Andrew Schulman^a, Juanjuan Du^a, Feng Wang^a, Oded Singer^{a,3}, Jennifer Ma^a, Vanessa Nunez^a, Jiayin Shen^{a,4}, Ashley K. Woods^a, Timothy M. Wright^a, Peter G. Schultz^{a,b,5}, Chan Hyuk Kim^{a,5}, and Travis S. Young^{a,5}

^aDepartment of Biology, California Institute for Biomedical Research, La Jolla, CA 92019; and ^bDepartment of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037

Switchable CAR-T cells:

- Retargeting of CAR-T cells by the introduction of peptide-neo epitopes (PNE) in an antigen-specific antibody (anti-CD19)
 - 14aa PNE sequence from the yeast transcription factor GCN4

In silico immunogenicity assay of PNE:

EpiMatrix Protein Immunogenicity Scale

PNE peptide: NYHLENEVARLKKL

Peptide sequences analyzed: LCNT: N-terminal graft of the PNE to the 4D5 light chain LCWT: wild type 4D5 light chain HCNT: N-terminal graft of the PNE to the 4D5 heavy chain HCWT: wild type 4D5 heavy chain

–LCNT (-25.17) –LCWT (-34.97)

—HCNT (-53.73) —HCWT (-64.47)

 Gene fragments encoding anti-CD19 or anti-CD20 heavy and light chains with or without PNE engraftment were synthesized

Anti-CD19 FMC63 Light chain LCC1 (graft and linker underlined):

DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE DIATYFCQQGNTLPYTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQ ESVTEQDSGGGGSNYHLENEVARI KKLGGGGGSDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Inker sequence

Effect of hinge region design on sCAR-T cells in vitro:

sCAR-T cells with different hinge length

Increased sCAR-T cell activation through shorter hinge regions (IgG4) and

dimerization of sCAR upon interchain sCAR formation (IgG4m)

Effectiveness of sCAR-T cells with different switch and hinge designs in vivo:

 Most effective *in vivo* tumor clearance by sCAR-T cells with IgG4m hinge region and anti-CD19 switches with NT fused PNE sCAR-T cell expansion during tumor clearance in vivo:

 in vivo tumor clearance by sCAR-T cells with IgG4m hinge region and anti-CD19-NT-PNE switch comparable to conventional anti-CD19 CAR-T cells

Dose dependent control of sCAR-T cell activity in vivo:

 switch dose is able to control activity, cytokine release and phenotype of CAR-T cells *in vivo*

Summary switchable CAR cells:

strategy to combine autonomous control with user control for engineering safer
 therapeutic immune cells

Pros:

- selective regulation in temporal and titratable manner
- this strategy requires no elimination of the therapeutic immune cells after treatment
 - \rightarrow persistence and re-activation in case of relapse
- Modularity allows the use of one sCAR-T cell with different switches targeting various antigens

Cons:

- Distribution and localization of CAR-T cell and switch?

Thank you for your attention!!!

Thank you for your attention!!!

Strategies for engineering therapeutic cells with autonomous and user control:

- Switch based on Fab format using a anti-CD19-specific monoclonal Ab
- FITC conjugation of anti-CD-19 Fab
 - site-specific

Incorporation of noncanonical amino acids with bio-orthogonal chemical reactivity

Wals and Ovaa 2014, Frontiers in Chemistry

- Switch based on Fab format using a anti-CD19-specific monoclonal Ab
- FITC conjugation of anti-CD-19 Fab
 - site-specific

Incorporation of noncanonical amino acids with bio-orthogonal chemical reactivity

Effectiveness of ON-switch CAR cells:

Antigen-specific and titratable killing of target cell population

In vivo control of sCAR-T cell activity:

- specific T cell expansion upon treatment with sCAR-T cell and anti-CD19 AB switch
- dose dependent of cytokines

Effectiveness of sCAR-T cells with optimized anti-CD19 AB-FITC switch *in vivo:*

 Anti-FITC CAR-T cells in conjugation with optimized anti-CD19 AB switch are comparable to conventional anti-CD19 CAR-T cells

In vivo termination of persistent B cell ablation by stopping of switch dosing:

mouse sCAR-T cell generated using splenocytes from C57BL/6 mice

Targeting of other tumor antigens (CD22) using the same anti-FITC CAR T cell:

Effect of PNE conjugation on sCAR-T cells:

 Anti-CD19 – and anti-CD20 switches with PNE conjugations proximal (NT) to antigen binding region are more potent → decreased distance EC and TC?

In silico immunogenicity assay of PNE

In silico immunogenicity assay of PNE

ISPRI is an *integrated, interactive set of tools* specifically designed for immunogenicity analysis. ISPRI provides the **depth of analysis** necessary to accurately predict clinical immunogenicity.

In silico immunogenicity assay of PNE

