Imaging Synaptic Transmission

Emina Lemes

Intro - Synaptic transmission

B Mechanisms for recycling synaptic vesicles

Intro - Vesicle fusion

Relevance

Presynaptic alterations -Neurodegenerative diseases (ND)

	Alzheimer's disease	
Factor	Phenotype at presynaptic terminal	Ref
Amyloid Precursor Protein (APP)	 Negative regulator of synapse formation Negative regulator for readily releasable pool of synaptic vesicle Molecular Hub in presynaptic active zone (PAZ) 	3 3 4
Amyloid beta (Aβ)	 Downregulation of presynaptic protein expression Increase release probability (soluble Aβ- normal condition) Disruption of vesicle fusion ability by inhibiting VAMP2 function (pathologic Aβ) 	5 7 9
BACE1 γ-secretase/Presenilin	 Negative regulator for excitatory synaptic transmission (homeostatic synaptic plasticity) Presynaptic short-term plasticity, synaptic facilitation Homeostatic synaptic scaling of excitatory synapses 	15 17 18
Tau ApoE4	 Synaptic stability (presynaptic proteins, synaptic vesicle) Downregulation of amount glutamate Modulation of spontaneous vesicle release 	19, 20 27 28

Bae JR, Kim SH. Synapses in neurodegenerative diseases. *BMB Reports*. 2017.

ND – Alzheimer's disease

	Parkinson's disease	Parkinson's disease			
Factor	Phenotype at presynaptic terminal	Ref			
α-synuclein	 Impairment of dopamine release in SNpc Impairment of synaptic vesicle endocytosis and reclustering Reduction of synaptic vesicle recycling pool 	38 39,40 41			
LRRK2	 Impairment of release and decreased DA uptake in SNpc Impairment of synaptic endocytosis in presynaptic terminals 	48 45			
Parkin	 Reduction of dopamine release Impairment of synaptic plasticity in striatal cells 	55 53			
PINK1	 Impairment of synaptic plasticity and release of dopaminergic neuron 	62			
DJ-1	 Defect of LTD through inhibitory effects of D2 receptor 	68			
Synaptojanin1	 Slowed endocytosis rate for small stimulation by defect of phosphatase activity 	74,75			
Endophilin	 Regulation of Parkin expression 	76			

Bae JR, Kim SH. Synapses in neurodegenerative diseases. *BMB Reports*. 2017.

ND – Parkinsons's disease

Table 3. Summary of presynaptic phenotype by ALS and HD genetic factors

ALS and Huntington's disease						
F	actor	Phenotype at presynaptic terminal	Ref			
ALS	SOD-1	 Axonal transport Synaptic degeneration 	83 84,85			
	TDP-43	 Expression regulation of presynaptic protein 	88			
		 Attenuation of synaptic transmission 	89			
	FUS	 Active zone formation, synaptic transmission 	93			
HD	HTT	 Synaptic transmission, release probability 	94			
		 Synaptic vesicle dynamics 	95,96			

Bae JR, Kim SH. Synapses in neurodegenerative diseases. *BMB Reports*. 2017.

ND – Huntingtons's disease and ALS

- Glutamate release ->
 - high degree of heterogeneity among synapses
 - Study neuronal circuits of different brain regions

- To probe presynaptic function:
 - record presyn Ca²⁺ dynamics
 - presyn release of glutamate

Relevance in physiology - Ca²⁺ entry and glutamate release

Advances - Tools

• Important factors:

- timeresolution
- localization
- non-confunded readout
- specificity
- invasiveness
- timerange (months/weeks/days?)

Advances- Calcium/Glutamate indicators

Existing tools

- **Aequorin:** bioluminescent ca binding photoprotein 1.
- 2. Arsenazo III: absorbance dye that changes its absorption spectrum as a function of bound calcium
- **Fluorescent calcium indicators**, hybridization of EGTA/BAPTA (Ca-chelators) with fluorophores (Roger Tsien and colleagues:)
 - Quin-2, Fura-2, Indo-1, Fluo-3
 - Oregon Green BAPTA (OGB)
 - fluo-4 dye families (Paredes et al., 2008).
- **4. GECI**s, protein-based genetically encoded calcium indicators (Lab of Roger Tsien (Miyawaki et al., 1997)
 - 1. GCaMP-s

Advances – Calcium indicators

implementation and use often tedious, mostly because of problems with dye deliverv

relatively easy to implement and provide large signal-to-noise ratios

Existing tools for quantitative measurement :

- 1. in situ microdyalisis
- 2. Microelectrode
- 3. glutamate dehydrogenase/oxidase coupled to NADH fluorescence readout

- Lack cellular resolution
- are confunded
- Have large responsetimes

- 4. Biosensors composed of glutamate-binding proteins coupled to fluorescence readout
 - 1. genetically encoded (like the Ca indicators (GECI))
 - 2. Glutamate (E) optical sensor: EOS (hybrid sensor made from AMPA R glutamate binding core and a small-molecule dye)
 - 3. PBP (bacterial periplasmic binding proteins)
 - FRET (FLIP-E , SuperGluSnFR)
 - Single wavelenghth indicators

Advances – Glutamate indicators

Entry: 1st paper

An optimized fluorescent probe for visualizing glutamate neurotransmission

Jonathan S Marvin¹, Bart G Borghuis^{1,2}, Lin Tian^{1,7}, Joseph Cichon³, Mark T Harnett¹, Jasper Akerboom¹, Andrew Gordus⁴, Sabine L Renninger⁵, Tsai-Wen Chen¹, Cornelia I Bargmann⁴, Michael B Orger⁵, Eric R Schreiter¹, Jonathan B Demb^{2,6}, Wen-Biao Gan³, S Andrew Hires¹ & Loren L Looger¹

Engineered:

an intensity-based, single-wavelength, glutamate-sensing fluorescent reporter (iGluSnFR)

- highly sensitive
- localized
- High signal-to-noise ratio and kinetics appropriate for *in situ* and *in vivo* imaging.

What did they do and why is this amazing?

An optimized fluorescent probe for visualizing glutamate neurotransmission

 Glt1: Part of the ABC transporter complex involved in glutamate and aspartate uptake

Circular permutation:

Yu Y, Lutz S. 2011.

Sensor development – main players

An optimized fluorescent probe for visualizing glutamate neurotransmission

E.Coli Glutamate/aspartate Import solute-binding Protein

Exploit conformational change for detection of difference in Fluorescence upon ligand binding

expressed as $\Delta F/F = (F - F_0)/F_0$

Sensor development – principle

High throughput screening

Sensor development - principle

An optimized fluorescent probe for visualizing glutamate neurotransmission

 $(\Delta F/F)$ max – glut / PBS

12

GltI253.L1LV/L2NP – Photostability

iGluSnFR – Vectordesign

Relative fluorescence change

iGluSnFR – in action

In vitro titration of L1LV/L2NP with **glutamate** and **aspartate** (orange) and *in situ* titration of **iGluSnFR on HEK293**

cells and cultured neurons

-> **25-fold** increase in affinity from that of the soluble protein

iGluSnFR – soluble vs. bound

iGluSnFR – in neurons and astrocytes

iGluSnFR – in neurons and astrocytes

Mouse retina – light evoked gluamate release

- iGluSnFR -> expressed in ganglion cells ,
- 14–21 d post-injection, targeted for whole-cell recording (OFF sustained type)

- iGluSnFR responses in ON and OFF layers
- L-AP4, selectively hyperpolarizes ON bipolar cells, blocking their synaptic release, but does not block release from OFF bipolar cells

Mouse retina – light evoked gluamate release

- Deliverey of iGluSnFR to layer V of the motor cortex
- Mice imaged while resting-awake or running
- Measured iGluSnFR fluorescence in response to motor tasks

iGluSnFR showing apparent dendritic spines (arrowheads)

Mice – iGluSnFR functionality in vivo

• iGluSnFR fluorescence in response to motor tasks

two-photon images of a dendritic segment from the apical tuft of motor cortex

Mice – iGluSnFR functionality in vivo

iGluSnFR

- Direct and specific detection of glut release
 - *in situ* and *in vivo*
- Specific localization possible
- High SNR
- Could be directed towards postsynaptic membrane to monitor timing and localization of excitatory postsynaptic input from different afferent neurons along a dendritic arbour

+

- Better than Calcium sensors for reporting neuronal activity
 - + Since then : development new brighter variants for in vivo imaging

Conclusion

- For investigating full complement of glut synapse types -> lower affinity variants needed
 - ~4 μM affinity of iGluSnFR pre- cludes quantitation of the millimolar glutamate concentrations

Entry: 2nd paper

"A preprint, aka an invitation to be critical" (Quote - Referee #3)

Multiplex imaging of quantal glutamate release and presynaptic Ca^{2+} at multiple synapses *in situ*

Thomas P. Jensen¹, Kaiyu Zheng¹, Nicholas Cole¹, Jonathan S. Marvin², Loren L. Looger², Dmitri A. Rusakov¹

¹UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK

²Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA

• Combined imaging of red-shifted fluorescent Ca2+ indicator (Cal-590) with iGluSnFR glutamate imaging at single synaptic boutons

bouton 1

iGluSn

Cal-5

200 m

 4π

• Makes it possible to conduct studies looking at the connection between presyn calcium signalling and glutamate response

bouton 2

Cal-59

FLIM - Fluorescence-lif etime imaging microscopy

- Insensitive to:
 - light scattering
 - Dye concentration,

Laser Pulse

Start

- Focus drift
- Photobleaching

Arrival time

- Is Cal-590 FLIM readout correlated with [Ca²⁺]?
- using a series of Ca2+-clamped solutions

*Fluorescence-lifetime imaging microscopy

FLIM readout of red-shifted Cal-590

*Fluorescence-lifetime imaging microscopy

FLIM readout of red-shifted Cal-590

- Quantitative calibration (Cal-590)
- Normalized total count method (photon counts integrated along Ca sensitive components)
 - -> greatest sensitivity in the 0- 200 nM range

Cal-590 peak sensitivity

Cal-590

С

- organotypic hippocampal brain slices
- Cell labeling through biolistic tranfection of iGluSnFR
- Patch loaded iGluSnFR expressing cell with Cal-590
- traced their axons for at least 150-200 microns from the cell soma, towards area CA1
- Tornado scanning of axonal bouton

Spiral line-scanning mode

In situ - Cal-590 in action

1 µm

0

C

0

С

- Example of a single-bouton Cal-590 signal
- Represents 5 concenttric spiral circles
- 500 ms 100 Hz burst of spike-inducing somatic 1 ms current pulses

 fluorescence intensity (integrated over the 10π spiral scan) time course

In situ - Cal-590 in action

 Representation of FLIM readout at basal and high Ca from d

In situ - Cal-590 in action

 CA3 pyramidal cell axon fragment showing four presynaptic boutons

- Linescan od iGluSnFR at 4 boutons recorded simultaneously
- During somatic generation of spikes

iGluSnFR - readout

- no detectable photobleaching, over multiple trials
 - enables direct readout of release probability at multiple synapses from same circuitry

Pr

0.57

0.43

0.65

0.65

Synaptic cleft: iGluSnFR.A184S Emmission GREEN

- 2 dyes with 2 different emmission maxima
- Simultaneous imaging of Ca and glu possible?
 - -> in situ

Cal-590 + iGluSnFR.A184S

individually traced axonal boutons of CA3 pyramidal cells

Simultaneous monitoring of quantal glutamate release and presynaptic Ca²⁺ dynamics

• Two characteristic single-trial, one-sweep recordings ->

b

bouton 1

bouton 2

1x

20x

Simultaneous monitoring of quantal glut release and presyn Ca²⁺ dynamics

- Comparing glut release of Cal-590 loaded and not loaded
- average detected release probabilities were indistinguishable

Testing Ca²⁺ buffering interference

Nanoscopic co-localisation of Ca²⁺ entry and presynaptic glutamate release а

Synaptic cleft: 2 - 4 nm

- 2-photon diffraction limit:
 - 0.2-0.3 μm (focal, x-y) 🔶
 - 0.8-1.2 µm in z
 - Note: when imaging xy -> z fluorometric signal is integrated

b

Nanoscopic co-localisation of Ca²⁺ entry and presynaptic glutamate release

• Steep diffusion rates of both Ca2+ and glut -> causing concentrations to fall rapidly from site of action

Sub-diffraction localization through multiple-exposure noise reduction

• Correction:

• overestimation corrected using trigonometric relationships for planar projection of a sphere

Sub-diffraction localization - Correction

- effect of Ca2+ indicators on rapid presynaptic Ca2+ dynamics and release probability could be significant
- Reqcuires seperate study
- Systematic comparison of release probabilities
- Cal-590 has a relatively low affinity
- iGluSnFR fluorescence signal (for tracing) interference?
- sub-diffraction localisation with current settings is feasible only in the x-y plane whereas in the z plane the signal location is more uncertain
- Correction bears possibility of error

Conclusion – the questionable

- Co-localization studies through imaging and correction possible (2 dyes with separate emmission maxima)
- Possibility of further studying :
 - Presyn spike detection
 - Mechanistic relationship Calcium entry and glutamate release
 - presynaptic Ca entry and glut release dependance in diverse neural circuits, in different brain regions
- Cal-590 low affinity -> less buffering than OGB-1
- No significant effect of axon loading with Cal-590 on average release probability
- Prev: OGB-1 /GECIs used to study neural network activity in freely-moving animals without apparent behavioural implications
- Decrease Problems of live imaging *in situ* or *in vivo*:
 - focus drift, photobleaching, or physiological changes in tissue light scattering or absorption

Conclusion – the good

Done:)