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INTRODUCTION

Histopathological images contain rich phenotypic information that can be used to monitor underlying mechanisms contributing to disease
progression and patient survival outcomes.

Pathological analysis under the microscope is inherently subjective in nature. Differences in visual perception and clinical training
can lead to inconsistencies in diagnostic and prognostic opinions.

Even experienced pathologists are prone to misdetect features and make errors due to the enormous amount of tissue to analyse
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Qualified diagnosis requires peer review and consensus.



In the 1990s, hospitals adopted sub-micron-level resolution tissue scanners that capture
gigapixel whole-slide images (WSI).
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Few areas (radiology, pathology, Physicians assign pathological scores

ophthalmology, and dermatology) have to digital slides depending on the
received substantial attention owing to disease phenotypes which can be
such availability of highly structured detected by Al software

images.

Here, Deep Learning (DL) can support critical medical tasks, including diagnostics,
prognostication of outcomes and treatment response, pathology segmentation, disease
monitoring, and so forth.

DL has been introduced into diagnostic workflows with the aim of secondary diagnostic
opinion.



Overview of the algorithm and clinical deployment of the Galen Prostate second read system
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Pantanowitz et al., 2020. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images. The Lancet.



Al applications

* High content screening
* Cytology and histopathology

* Time-lapse image analysis
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Fig. 1: (a) An overview of numbers of papers published from January 2013 to
December 2019 in deep learning based computation histopathology surveyed
in this paper. (b) A categorical breakdown of the number of papers published

in each learning schemas.

Chetan L. Srinidhi et al., Deep neural network models for
computational histopathology: A survey, Medical Image Analysis
(2020)
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Supervised Learning
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Supervised Learning

* There is the need to annotate a huge datasets before using the network. It is time-consuming for pathologists.

* Qutsourcing labelling to non-experts can, however, lead to subjective and inconsistent labels and conventional DL models may
find it challenging to train with noisy annotations.

* An alternative approach is to make use of expert advice by providing feedback for annotating rare and challenging cases.

» A possibility is to use a set of precomputed annotations from an automated system, and correct only those labels with
inconsistent markings under expert supervision (Marzahl et al., 2019)
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Supervised Learning — Segmentation

Segmentation of histological tissue components nature > nature communications > articles > article
is an essential pre-requisite for obtaining reliable

morphological measurements.
Article | Open Access | Published: 15 May 2019

- Pixel-level delineation of object contour or Interpretable classification of Alzheimer’s disease
e raq.© nterior of the object of interest s pathologies with a convolutional neural network
pipeline
* Best model so far achieved is the U-Net Ziqi Tang, Kangway V. Chuang, Charles DeCarli, Lee-Way Jin, Laurel Beckett, Michael J. Keiser = &
DCNN for histopathology Brittany N. Dugger &3
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Diagnosis of AD incorporate protocols assessing plaque density, distribution and morphology for understanding
disease progression and pathophysiology.

Manual counts or stereological methods can be tedious, difficult to score, and time-consuming.

DCNNs augment neuropathological whole slide image (WSI) analysis of archival human post-mortem tissues.

Custom web interface for rapid expert annotation and training of CNN models capable of
distinguishing AP pathologies in the form of:

1. Cored plagues

2. Diffuse plaques

3. Cerebral amyloid angiopathy (CAA)



Digitized whole slide images
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After

- ° | | Expert neuropathologist
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Custom labeling
web application

Labeled dataset

2. Automatic

tile-level IHC stain segmentation

3. Dataset
annotation and curation

Keyboard control:

C : cored
D : diffuse
A :CAA
N : negative
F : Flag
1 :not sure
Enter : next
U : undo
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Diffuse
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_| Flag

| Not sure

Normalized

43 digitized microscope slides from different patients
(5000050000 pixels images)

256 X 256 pixel tiles centered on individual plague candidates
to use as direct input of the CNN

Simple web interface to rapidly annotate AB pathology-
candidate image tiles



55,001 annotated images for model training have been used (85% were images of diffuse plaques).

The trained model was applied to another dataset with 101,671 unlabeled images. These unlabeled images were
ranked by the prediction confidence for cored plaques or CAAs.

11,029 images with high prediction confidence for cored plaques or CAAs were then labeled by the
neuropathologist as annotation phase Il.

Annotated Unlabeled Annotated
phase | dataset dataset phase |l dataset
i ™

55,001 L 101,671 ] { 11,029

\ '\_ i ) |
e o [Prediction./
Convolutional
neural network

Table 1 Summary of annotated object tile dataset by project phase

Phase Cored plaque Diffuse plaque CAA Total

Development phase | 1233 (2.24%) 46,650 (B4.82%) 778 (1.14%) 55,001
Development phase Il 1035 (9.38%) 7610 (69.00%) 1405 (12.74%) 1,029
Development total 2268 (3.43%) 54,260 (8217%) 2183 (3.31%) 66,030

Test (phase II1) 83 (0.76%) 10,234 (94.12%) 7 (0.06%) 10,873

Remaining unlisted percentages comespand to Mot Sure o Flagged labeks (s2e Methads)




Receiver operator characteristic curve Receiver operator characteristic curve Receiver operator characteristic curve

(on validation set) (on test set) (on test set) with 50% less annotated training images
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a Expert labels (cored only) Blind prediction heatmap Assessment of agreement
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In the leftmost column, a green box
surrounds the cored plague within the tile,
as labeled by a neuropathologist during
the Phase-Ill dataset annotation

The middle column overlays the prediction
map onto the original IHC-stained image.

The rightmost column summarizes
agreement between the expert label and
the prediction, with blue and cyan
representing correct prediction areas,
while red and orange denote
misclassification



a Cored Diffuse CAA

In this cohort, diffuse plaques are densely
distributed across the gray matter,
whereas cored plaques are predominantly
located in deeper and lower cortical
layers, in accordance with known

g ' neuroanatomic distributions

Furthermore, CAA predictions predominantly
appear proximal to the cortical surface
where leptomeninges are present

Confidence scale

These maps highlight other locational
aspects of the plaques, such as their
presence in the white matter immediately
beneath the gray matter.

0.8




CNN-based WSI scores for AB pathology at a global WSI level
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OUTLOOKS

* They developed an end-to-end pipeline to automate WSI processing
and aid rapid image annotation (cloud-based Amazon Web Services
Elastic Beanstalk) .

* They retrospectively evaluated the necessary training data size
suggesting a reduced dataset may be pragmatically sufficient for
classification of cored and diffuse plaques.

* They finally evaluated whether CNN models could automatically
quantify AB burden on a whole-slide level in a way that would correlate
with standard semi-quantitative methods for plaque assessment.



PROS

* Models such as these may help to quantify contents of pathologies in a scalable way.

* It may reduce the pathologists’ workload giving a second opinion on multiple pathological
specific phenotypes

CONS

» Differences in experience and annotation criteria will likely result in individual expert
variation among ground truth labels.

* All data used in this study were from a single brain bank and retrieved and digitized under
the same conditions; more diverse datasets from multiple sources will yield more robust and

reliable models.
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Supervised Learning — Classification models

Within this category, we further identify two sub-
categories:

* Local-level tasks: based on a region (i.e., cell, nuclei)
represented by a spatially pooled feature
representations or scores, aiming at identifying or
localizing objects.

* Global-level tasks: related to image-level prediction
tasks such as whole-slide level disease grading (e.g.
tissue-level cancer localization)

The main success of these CNN models depends on:
* The number of images available for training
* The choice of network hyper-parameters

* Various other boosting techniques

ARTICLES machine intelligence
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Intro & Goals

* Al to generate clinical diagnostic descriptions and network visual attention maps of whole-slide data
representing patients with bladder cancer.

* A novel pathology whole-slide diagnosis method, powered by artificial intelligence, to address the
lack of interpretable diagnosis.

* It automates the human-like diagnostic reasoning process and translate gigapixels directly to a series
of interpretable predictions

* |t provides a second opinions and thereby encouraging consensus in clinics.
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s-net (first network)
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s-net (first network)

a 100 test whole slides b 293 test+val. whole slides
1 1
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s-net (first network)
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d-net (second network)

Based on the tumour detection result, the system conducts the following steps to automatically select a set of
diagnostically useful tissue images around detected tumours from the whole slide and in turn associate the pathology
reports containing five morphological features and the final diagnose.

Tumour
oy

d-net The d-net is a composite neural network that can combine multimodal
information = It includes:

Inception-v3 CNN - an image model to represent visual knowledge
by encoding image pixels into feature maps.

advanced RNN LSTM - a language model to generate diagnostic
descriptions and network visual attention.

- Recurrent
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word



d-net (second network)

To construct the IlI-Report dataset, they selected 221 non-invasive HG and LG papillary urothelial carcinoma slides
)
4,253 cropped images of the most representative regions
)
Experienced pathologists provided pathology reports containing 5 types of known pathology cellular features
(state of nuclear pleomorphism, cell crowding, cell polarity, mitosis and prominence of nucleoli)

)
21,265 image-report pairs in total

Marked variability in
nuclear size shape

¥ and outline consistent
e with severe
pleomorphism.

There is a moderate
degree of crowding

...... Cells show
complete lack of
polarity. Mitosis is
rare. The nuclei
have inconspicuous
nucleoli. High grade.

0] Type (Data, annotation) Train Validation Test
I Slide (Slide, mask&label) 620 193 100
Il Image (Image, mask&label) 148,671 8,371 —

Il Report (Image, text) 11,820 6,297 3,148

v Diagnosis (Feature, label) 620-M 193-M 100-M




d-net (second network)

Their method accurately describes multiple types of cell features that resemble the pathologists’ interpretations.

Mild pleomorphism and cytologic atypia are
present. There is a mild degree of crowding.
There is marked disorganization and lack of
cellular polarity toward the surface
urothelium. There are frequent mitotic
figures throughout the tissue. Prominent
nucleoli are easilyidentified in low
magnification scanning. High grade.

Mild pleomorphism and cytologic atypia
is present. Mild crowding of the nuclei
can be seen. Architecturally the cells
show complete lack of polarity toward
the surface urothelium. Mitosis is
frequent. Nucleoli are prominent. High
grade.

Mitosis-aware Nucleoli-aware
attention attention

Moderate pleomorphism and cytologic
atypia are present. Moderate crowding
of the nuclei can be seen. Polarity is
negligibly lost. Mitosis is rare. The nuclei
have inconspicuous nucleoli. Low grade.

Moderate pleomorphism is present. Moderate
nuclear crowding is seen. Polarity is negligibly
lost. Mitosis is rarely visible. Nucleoli are not
observed or exceedingly rare. Low grade.

Pleomorphism-  Crowding-aware Polarity-aware
aware attention attention attention



d-net (second network)

They also investigated pathologist variability in diagnosing bladder cancer and further compared the results to our method.
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a-net (third network)

It aggregates all the diagnostic information together in all slide ROIs and establish a final diagnosis

[d-net encoded features and raw tumour class probability] It takes integrated ROI feature encodings and predicts
slide cancer labels.

a-net was trained: et ?H - - O
I ,
LG carcinoma
. - P . . .. .
Zomfrl;G RObIs from the l f 6 carci The final diagnosis is the maximum
- carcinoma ops
ne avg efn Siide L : class probability response of the
annotated as LG cancer diagnosis g —— amet Diagnosis accumulated probability of the 10-
* Some HG-ROIs from the | @ time predictions
d-net have been Slide ROI Sampling Integration
annotated as HG cancer | encodings distribution Network
\ Slide ROI integration Inputs Operations

They propose a stochastic feature sampling
mechanism to effectively augment training data
through random feature combination so as to
improve the model generalization.



a-net (third network)

It aggregates all the diagnostic information together in all slide ROlIs and establish a final diagnosis

Tumour

0.5

0
Normal

Mild pleomorphism and cytologic atypia are present. There
i is a normal degree of crowding. There is no full-thickness
lack of polarity observed. Mitosis is rare. The nuclei have
inconspicuous nucleoli. Low grade.

Nuclear features show moderate pleomorphism. mild crowding
of the nuclei can be seen. polarity is not completely lost toward
the surface urothelium. mitosis is rare throughout the tissue.
the nuclei have inconspicuous nucleoli. High grade.

Diagnosis HG Diagnosis LG



OUTLOOK

* Novel interpretable diagnosis method for diagnostic pathology which shows
unprecedented advantages over previous work.

* Comprehensive validation on a large-scale bladder cancer data set demonstrates that
the performance is similar to that of a wide range of pathologists.

* |t supports pathologists when conducting a second review and visual inspection.




PROS

* Their method has strong generalizability for learning complex tissue structures and cell
patterns in different pathological conditions.

* It may reduce the pathologists’ workload giving a second opinion on multiple pathological
specific phenotypes

CONS

* |tis the relatively long computational time required to carry out a dense patch- wise
prediction over an entire WSI.

* It requires a large number of images for training, choice of network hyper-parameters and
various other boosting techniques (time-consuming to set this up)




Thank you so much
for your attention
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