Expanding the toolbox of fluorescence protein-based sensors

Measure what is measurable, and make measurable what is not so.

Galileo Galilei

Outline

- 1) Introduction
- 2) dLight a new dopamine sensor (Patriarchi, Science, 2018)
- 3) An application (Corre, eLife, 2018)
- 4) Conclusion and comparison

Fluorescence protein-based sensors

Structure of GCaMP6 (dimer)

Ding, Sci China Life Sci, 2014 Chen, Nature, 2013

Fluorescence protein-based sensors

Structure of GCaMP6 (dimer)

Ding, Sci China Life Sci, 2014

Chen, Nature, 2013

iGluSnFR *Marvin, Nature Methods, 2013*

Fluorescence protein based sensors

Structure of GCaMP6 (dimer) Ding, Sci China Life Sci, 2014 Chen, Nature, 2013

iGluSnFR *Marvin, Nature Methods, 2013*

dLight1
Patriarchi, Science, 2018

Neuromodulators

- Neuromodulators > neuronal circuit dynamics > neural function and behavior
- Neuromodulator targeting drugs

 Little is known about how the neuromodulators alter the function of their target circuits

 Combine genetically encoded indicators based on fluorescent proteins with modern microscopy

Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors

Tommaso Patriarchi^{†,1}, Jounhong Ryan Cho^{†,2}, Katharina Merten³, Mark W. Howe⁴, Aaron Marley⁵, Wei-Hong Xiong⁶, Robert W. Folk³, Gerard Joey Broussard¹, Ruqiang Liang¹, Min Jee Jang², Haining Zhong⁶, Daniel Dombeck⁴, Mark von Zastrow⁵, Axel Nimmerjahn³, Viviana Gradinaru², John T. Williams⁶, and Lin Tian^{1,*}

Science, June 2018

Couple the dopamine (DA) binding-induced conformational changes in human DA receptor to changes in fluorescence intensity of cpGFP.

Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors

Tommaso Patriarchi^{†,1}, Jounhong Ryan Cho^{†,2}, Katharina Merten³, Mark W. Howe⁴, Aaron Marley⁵, Wei-Hong Xiong⁶, Robert W. Folk³, Gerard Joey Broussard¹, Ruqiang Liang¹, Min Jee Jang², Haining Zhong⁶, Daniel Dombeck⁴, Mark von Zastrow⁵, Axel Nimmerjahn³, Viviana Gradinaru², John T. Williams⁶, and Lin Tian^{1,*}

Science, 2018

Couple the dopamine (DA) binding-induced conformational changes in human DA receptor to changes in fluorescence intensity of cpGFP.

- High spatiotemporal resolution
- In behaving animals

NB

Sequence alignment

Sequence alignment

Screening of linker variants in HEK293 cells

Sequence alignment

Screening of linker variants in HEK293 cells

• DA titration: affinity

dLight1.1

dLight1.2: mutation of Phe129

DA titration: affinity

dLight1.1

dLight1.2: mutation of Phe129

 Optimization of cpGFP insertion site

• DA titration: affinity

dLight1.1

dLight1.2: mutation of Phe129

 Optimization of cpGFP insertion site

dLight1.4: DRD4 (small dynamic range)

Control: dLight1.1 with D103A mutation > no DA binding

- dLight1.1, 1.2
- Hippocampal neurons (culture)

Hippocampal slices

Endogenous and pharmacological molecular specificity

dLight does not affect endogenous signaling

Versatile application to other neuromodulators

Endogenous DA release: ex vivo

- 2-photon imaging
- Acute striatal slices
- Electrical stimulation and drug modification
- AAV9. hSynapsin1.dLight1.2

Endogenous DA release: ex vivo

- 2-photon imaging
- Acute striatal slices
- Electrical stimulation and drug modification
- AAV9. hSynapsin1.dLight1.2

Endogenous DA release: in vivo

- 2-photon imaging
- Mouse dorsal striatum
- Rest and self-initiated locomotion
- AAV9.*hSynapsin1*. dLight1.2

Combination with optogenetics

Combination with optogenetics

Combination with optogenetics

inhibition of DA transients

dLight can report bidirectional changes in local DA release.

Combination with calcium imaging

- dLight1.1 > local DA release
- Red-shifted calcium indicator jRGECO1a > neuronal activity
- Dual color fiber photometry

Dissociation DA vs. local activity

- Cue-reward learning
- Repeated fiber photometry recordings in NAc

Α

Cue-Reward Learning

ITI

ITI (45~75 sec)

CS

(75~105 sec)

Cue-Reward Extinction

CS-US

(10 sec)

CS

(10 sec)

- Cue-reward learning
- Repeated fiber photometry recordings in NAc

- Cue-reward learning
- Repeated fiber photometry recordings in NAc

- Cue-reward learning
- Repeated fiber photometry recordings in NAc

Expected Reward Delivery

Unexpected Reward Delivery

Unexpected Reward Omission

Conclusions

- New class of genetically encoded indicators
- High resolution imaging of DA dynamics in brain slices and behaving mice
- Submicromolar affinity
- Fast kinetics (10ms on, 100ms off)
- Detect physiologically relevant DA levels
- Higher molecular specificity than existing electrochemical or cell based probes
- Combination with Calcium imaging and optogenetics

An application...

Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement

Julie Corre¹, Ruud van Zessen¹, Michaël Loureiro¹, Tommaso Patriarchi², Lin Tian², Vincent Pascoli¹, Christian Lüscher^{1,3}*

¹Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland; ²School of Medicine, Department of Biochemistry and Molecular Medicine, University of California Davis, California, United States; ³Service of Neurology, University of Geneva Hospital, Geneva, Switzerland

eLife, 2018

DA hypothesis

DA hypothesis

VTA activity (calcium)

- DA hypothesis
- Causal relationship between enhanced mesolimbic dopamine and heroin reinforcement

- DA hypothesis
- Causal relationship between enhanced mesolimbic dopamine and heroin reinforcement

Comparison

- Microdialysis
- Fast-scan cyclic voltammetry
- CNiFER (cell-based neuro-transmitter fluorescent engineered reporter)

Comparison

- Microdialysis
- Fast-scan cyclic voltammetry
- CNiFER

- injected cell based system
- high molecular specificity (in vitro sensitivity for respecitive monoamine: nanomolar! 2.5nm for DA and 19nm for NE vs. dLight1.1: 330nm)
- poor temporal resolution

(2s on, 20s off vs dLight: 10ms on, 100ms off)

Were they the first/only ones?

A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific

Detection of Dopamine in Flies, Fish, and Mice

```
Fangmiao Sun 13 • Jianzhi Zeng 13 • Miao Jing 13 • ... Anatol C. Kreitzer • Guohong Cui • Yulong Li △ 14 ☑ • Show all authors • Show footnotes
```

Cell, July 2018

GRAB_{DA} (genetically encoded, GPCR activation based DA sensor)

$\mathsf{GRAB}_{\mathsf{DA}}$

GRAB_{DA}

- Cultured HEK293 cells and neurons
- Acute brain slices
- Drosophila, zebrafish, freely moving mice
- Combination with optogenetics in Pavlovian conditioning and male mating behavior

GRAB_{DA}

"A recently described fluorescent DA SRABDA Named dLight) utilizes a similar detection strategy to report DA signaling in vivo (Patriarchi et al., 2018

). The applied dLight variants report *in vivo* DA dynamics in rodent brains with similar GRABDA NI kinetics and signal-to-noise ratio as GRAB_{DA} sensors. However, the GRAB_{DA} have been optimized sensors brightness, consistent have more sensitivity (EC₅₀) to DA across different cell types, and have proven efficacy in multiple organisms in vivo.»

Thank you for your attention!

Addendum

- 2-photon imaging
- In cortex
- Visuomotor association task

- 2-photon imaging
- In cortex
- Visuomotor association task

Reward

Unexpected omission

Missed trials

