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e Overview: main viral delivery systems and viral vector targeting

* Engineering of AAVs with novel tropism
* Novel hybrid vector for delivery of large cargoes



Most widely used viral delivery systems

Viruses represent powerful tools to deliver genes into host cells. Viruses with different capacities
and characteristics have been exploited.
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Most widely used viral delivery systems

Feature
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Viral tropism constrains applicablility

One major challenge in the use of viruses for gene delivery is that the viral vector
targets the desired cells.

Ways to circumvent the problem:

- Vector targeting by pseudotyping
- Vector targeting using adaptors

- Genetic incorporation of targeting ligands



Vector targeting by pseudotyping

A Pseudotyping

Retrovirus (lentivirus)

Env from a different virus

Pseudotyping: Changing the tropism of a virus by replacing the viral attachment protein with that
of a related virus. Can be achieved by co-expressing the necessary attachment protein.



Vector targeting using adaptors

Receptor-ligand complexes Monoclonal antibodies as adaptors
Adaptor systems using avidin and biotin Bispecific antibodies as adaptors
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Genetic incorporation of targeting ligands
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Via genetical engineering a polypeptide is incorporated into the vector to
facilitate targeted transduction



Most widely used viral delivery systems

Limitations:
Small capacity for cargo.

Can deliver genes below a certain size

Cannot deliver proteins
(limited) Tropism
Preexisting immunity

safety concerns

Following papers show two approaches how to modulate viral delivery for specific needs
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nature
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Engineered AAVs for efficient noninvasive gene delivery
to the central and peripheral nervous systems

Ken Y Chan, Min J Jang, Bryan B Yoo, Alon Greenbaum, Namita Ravi, Wei-Li Wu, Luis Sdnchez-Guardado,
Carlos Lois, Sarkis K Mazmanian, Benjamin E Deverman & Viviana Gradinaru

Description of the development of modulated AAVs to target the CNS or peripheral neurons upon
systemic delivery



Selection of AAVs with different tropism
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Original AAV9 has been shown to be able to cross the BBB and first round of selection resulted in AAV-PHP.B. (Deverman BE et
al., Nat. Biotech., 2016).

Here, they further mutated the responsible hepamter sequence to screen for enhanced tropism => AAV-PHP.eB
In addition, they screened AAV9 for in GFAP-Cre mice and discovered a AAV specifically targeting sensory neurons => AAV-PHP.S



Expression analysis
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Comparison to previous CNS AAV
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Novel PNS neuron specific AAV
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Cell type specific AAV delivered gene expression

d  ssAAV-PHP.eB:Promoter-XEP
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Conclusions

Developed and characterized two new capsids, AAV-PHP.eB and AAV-PHP.S, that enable efficient and
noninvasive gene delivery throughout the CNS or PNS

Expression can be restricted to cell types via specifc promoters

Direct modulation of viruses remains a feasible way to expand their capabilities and exploit the power
of viral gene delivery

However, for parental AAV-PHP-B there is now a active debate ongoing, if the virus only targets the CNS
in C57BL/6J mice...
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A prokaryotic-eukaryotic hybrid viral vector for delivery
of large cargos of genes and proteins into human cells

Jingen Zhu', Pan Tao', Marthandan Mahalingam’, Jian Sha?, Paul Kilgore?,
Ashok K. Chopra?, Venigalla Rao'*

Description of the development of a prokaryotic-eukaryotic hybrid viral vector to combine AAV tropism
with large cargo delivery of bacteriophages



Short intro to T4 - bacteriophage

Selected phage Morphology Type of genetic material Size Host M.W. of intact phage

T4 : ds DNA 200 nm E. coli 110 kD

Species of bacteriophages that infects E. coli

Empty protein shell (capsid) can be produced individually and packaged with DNA

Capsid proteins can be modified to display proteins

The DNA packaging mechanism of the T4 phage is very rapid and powerful (up to ~2000 bp/s)
Can be packaged with ~170 kb of foreign genes

Can display (more than 1000) molecules on the capsid surface.

T4 head has no tropism to human cells, has no known toxicity or pathogenicity, exhibits no preexisting immunity,
and can be inexpensively produced on a large scale

However, phages are poor delivery vehicles because they lack natural mechanisms to enter mammalian cells or
reach appropriate intracellular compartments following entry

Source: Karimi et al., 2016, Advanced Drug Delivery Reviews



Hybrid vector principal
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Biotinylation of Soc and Hoc
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Coupling to biotinylated-AAV via avidin
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T4-AAV nanoparticles efficiently delivered genes
and proteins into mammalian (human) cells
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Gene delivery through both T4 and AAV

Both T4 and AAV can be simultaneously used to deliver genes

T4(mCherry)-AAV(GFP) nanoparticles (and vice versa) were added to HEK293 cells
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Simultaneous delivery of genes and proteins

- 116kDa beta-galactosidase was fused to Soc and displayed on the T4 head (~250 molecules)
- Additionally, ~9 plasmid DNA molecules for luciferase (6.2kbp) were packaged into the head
- At the same time, AAV was packaged with GFP and attached to the T4 head via Hoc bridges

- Transduction into HEK293 cells successful formation of the
functional tetrameric beta-

galactosidase enzyme
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the entire cargo of luciferase plasmids, GFP DNA, and beta-galactosidase
proteins was efficiently delivered into the cells.



Efficient in vivo gene delivery by T4-AAV nanoparticles

T4-Soc-AAVs and T4-Hoc-AAVs loaded with Luciferase plasmid DNA (in the T4 head) were injected
into muscles and showed greater efficency and longer lasting signal than T4 alone
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Multivalent DNA vaccine and protein antigen delivery by

T4-AAV

T4 delivery vector containing the HA stem (HA4900) DNA
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Biotinylation of Soc and Hoc

Displayed the plague antigen F1mutV on the exterior of the T4(HA4900)-AAV nanoparticles as a Soc
fusion protein

Mice then were treated with lethal Y. pestis CO92
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Conclusions |

unique prokaryotic-eukaryotic hybrid vector that can deliver complex and large cargos of genes and/or
proteins into mammalian cells

The T4-AAV vector developed incorporates the useful properties of two key viruses: high-capacity,
multifunctional T4 phage coupled with efficient entry and long-term gene expression by AAV.

(potential usage for e.g. guide plasmids and donor DNA molecules as well as Cas9 as displayed proteins
for efficent gene editing)

Future hybrid vectors could have a great potential for gene therapy



Source: Https://www.news-medicaI.net/Iife-sciences/ViruIent-Bacterioph!es-and-the-Lytic-CycIe.aspx
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