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why structure determination?
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elucidate structures to understand the mechanisms underlying biological function
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methods for structure determination

EMDB maps realeased

300 7

250 1

200

150 1

100 A

50 1

Resolution
range (A)
W 10-15
i 8-10
-1 6-8
 4-6

<4

i

2014 20157

2010

e

2011 2012 2013

Nogales, 2016



recent advances in cryo-EM
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single-particle cryo-EM workflow
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electron beam
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li. data collection: 2D projections

particle boxing

adapted from Pintilie (online)



lii. data processing: particle alignment and averaging

clustering averaging

adapted from Pintilie (online)



Iv. data processing: 3D reconstruction

3D map 3D model

adapted from Pintilie (online)
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nature

Electron cryomicroscopy observation of rotational
states in a eukaryotic V-ATPase

Jianhua Zhao®?*, Samir Benlekbir'* & John L. Rubinstein’%?



eukaryotic V-ATPase

eukaryotic vacuolar H*-ATPase

Rotary catalysis in V4 region




V-ATPase: data collection and processing

Macromolecular complex Cryo-EM
in solution (V-ATPase) imaging

2D projection particle boxing and classification
(106 445 particles)

Zhao, 2015



V-ATPase: data processing
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V-ATPase: data processing
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central rotor and soluble V; region
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membrane-bound V, region

ATP:H* = 3:10

Zhao, 2015



structural changes occurring during rotary catalysis

Zhao, 2015
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nature
structural &
molecular biology

Spiral architecture of the Hsp104 disaggregase reveals
the basis for polypeptide translocation

Adam L Yokom!:2, Stephanie N Gates!-2, Meredith E Jackrel?, Korrie L Mack?4, Min Sul, James Shorter3* &
Daniel R Southworth!



Hspl04 disaggregase

molecular chaperone, heat-shock protein
cooperation with Hsp70 in unfolding and rescuing aggregated protein
-> active translocation of polypeptide substrates through central channel

dose-dependent effects on yeast prion propagation
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Hspl04 domain arrangement

NTD NBD1 MD NBD2 CTD
151 399 527 545 857 -- ClpB
164 411 538 556 870908 Hsp104
NTD N-terminal domain substrate engagement
NBD nucleotide-binding domain ATPase-binding domain, power translocation
MD middle domain disaggregation, interaction with Hsp70
CTD C-terminal domain required for hexamerisation

Yokom, 2016



Hspl04: data collection and processing

2D projection classified and averaged particles
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Hspl04: data processing
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Hspl04: data processing

Yokom, 2016



spiral architecture
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mechanism of cooperative disaggregation

cooperative disaggregation

Yokom, 2016



conclusions and outlook

near-atomic resolution data
native and hydrated structure (no contact surfaces)
capturing of different functional states / conformational transitions

flexible regions do not impede structure determination

low signal-to-noise ration -> many images required
time consuming and delicate sample preparation
operation in a high vacuum

large, expensive factilities



outlook

optimisation and automation of sample preparation

further improvements of direct electron detectors

software development

time-resolved studies
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