# single-particle cryo-electron microscopy

technical journal club 30.05.2017

Manuela Pfammatter

#### outline

introduction

single-particle cryo-electron microscopy

Fernandez Leiro & Scheres, Nature, 2016

Frank, Nat Protoc, 2017

rotational states in a V-ATPase

Zhao et al., Nature, 2015

spiral architecture of Hsp104 disaggregase

Yokom et al., Nat Struct Mol Biol, 2016

conclusion & outlook

#### why structure determination?



protein function



interactions

 $\circ$ 

dynamics



structure

#### methods for structure determination



Resolution 300 range (Å) ■ 10-15 250 EMDB maps realeased ■ 8-10 **■**6-8 200 **■**4-6 **■** <4 150 100 50 2011 2012 2014 2010 2013 2015\*

Fernandez-Leiro, 2016

Nogales, 2016

#### recent advances in cryo-EM



Frank, 2017

# single-particle cryo-EM workflow



#### i. sample grid preparation



## ii. data collection: 2D projections





2D projections

particle boxing

## iii. data processing: particle alignment and averaging



## iv. data processing: 3D reconstruction





3D map 3D model

# recent progress in single-particle cryo-EM



#### principle of direct detection



courtesy of Direct Electron

# nature

# Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase

Jianhua Zhao<sup>1,2</sup>\*, Samir Benlekbir<sup>1</sup>\* & John L. Rubinstein<sup>1,2,3</sup>

### eukaryotic V-ATPase

#### eukaryotic vacuolar H+-ATPase







### V-ATPase: data collection and processing



2D projection

particle boxing and classification (106 445 particles)

### V-ATPase: data processing





3D maps

### V-ATPase: data processing





### central rotor and soluble V<sub>1</sub> region





# membrane-bound V<sub>0</sub> region



 $ATP:H^{+} = 3:10$ 

# structural changes occurring during rotary catalysis



nature structural & molecular biology

# Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation

Adam L Yokom<sup>1,2</sup>, Stephanie N Gates<sup>1,2</sup>, Meredith E Jackrel<sup>3</sup>, Korrie L Mack<sup>3,4</sup>, Min Su<sup>1</sup>, James Shorter<sup>3,4</sup> & Daniel R Southworth<sup>1</sup>

#### Hsp104 disaggregase

molecular chaperone, heat-shock protein
cooperation with Hsp70 in unfolding and rescuing aggregated protein
-> active translocation of polypeptide substrates through central channel
dose-dependent effects on yeast prion propagation



### Hsp104 domain arrangement



| NTD | N-terminal domain         | substrate engagement                       |
|-----|---------------------------|--------------------------------------------|
| NBD | nucleotide-binding domain | ATPase-binding domain, power translocation |
| MD  | middle domain             | disaggregation, interaction with Hsp70     |
| CTD | C-terminal domain         | required for hexamerisation                |

Hsp104: data collection and processing



2D projection



classified and averaged particles



### Hsp104: data processing



3D maps

# Hsp104: data processing



# spiral architecture







### mechanism of cooperative disaggregation



cooperative disaggregation

#### conclusions and outlook

- + near-atomic resolution data
- + native and hydrated structure (no contact surfaces)
- + capturing of different functional states / conformational transitions
- + flexible regions do not impede structure determination

- low signal-to-noise ration -> many images required
- time consuming and delicate sample preparation
- operation in a high vacuum
- large, expensive factilities

#### outlook

optimisation and automation of sample preparation

further improvements of direct electron detectors

software development

time-resolved studies