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Mapping the neuronal circuits underlying
spatial navigation



Spatial navigation: The capacity to plan and execute
a goal-directed path

* Map
 Your location
e Your destination

e Sense of direction ol -



The cognitive map hypothesis
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The neuronal basis of spatial cognition
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Mapping of a non-spatial dimension by the
hippocampal-entorhinal circuit

Dmitriy Aronov?!, Rhino Nevers' & David W. Tank!

!Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
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Sound modulation task (SMT)
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Recording sites and stability of the recordings

Session 1 Session 2 Session 3 Session 4
* [random > » (random
foraging) foraging)

layers: 65 3 21 0

2,208 units were recorded in the dorsal CAl1 b
hippocampal region and 1,164 units in the dorsal
MEC. 40.0% and 51.3% of cells in these regions,
respectively, had firing rates that were significantly

modulated during the SMT




CA1 and MEC activity in the SMT
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Activity depends on behavioral context
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SMT-modulated and spatially modulated cells overlap
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SMT-modulated and spatially modulated cells overlap
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Linking neuronal structure to function in cognitive
navigation: methodologies
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The cognitive map in humans: Using fMRI to
interrogate neural codes

Virtual navigation,
Imagined navigation,
Spatial memory recall
viewing of navigationally
relevant stimuli.

Resting Activated



Network of brain regions involved in spatial navigation

Neurosynth.org a. PPA
Neurosynth is a platform for large-scale, automated synthesis of

functional magnetic resonance imaging (fMRI) data.

It takes thousands of published articles reporting the results of
fMRI studies, chews on them for a bit, and then spits out images

that look like this:

An automated meta-analysis of 901 studies of working memory

Neurosynth.org Parahippocampal place area (PPA)

Sool.m Park.and Marvin M. ChurT, 2009, Neuroimage . Retrosplenial cortex (RSC)
Daniel D. Dilks and Nancy Kanwisher et al., 2013, Journal of Neuroscience L.
Russell A Epstein and Hugo J Spiers, 2017, Nature Neuroscience Occipital place area (OPA)



Temporal and spatial coding in humans
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Grid-like coding of navigable space in human
entorhinal cortex
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Head-direction coding in human parietal cortex

fMRI adaptation (also
known as fMRI repetition
suppression) occurs when
repeated presentation of
the same stimulus leads
to a reduction in the fMRI
signal. Adaptation across
two different  stimuli
provides evidence for a
common neural
representation, while an
absence of adaptation (or
'recovery from
adaptation') is evidence
that the two stimuli are
representationally
distinct.
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Limitations of fMRI

Major problems with BOLD signal

 The relationship between neural activity and blood
flow to the region is not a linear relationship.

e The BOLD signal was found to better model the

local field potential rather than the neural action
potential.
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