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Outline

< Introduction: microglia and other myeloid cells in the CNS

<> How to define them—> transcriptomics

- DAM microglia (Keren-Shaul et al., Cell 2017)
- Meta-analysis (Friedmann et al., Cell reports 2018)

- Development and injury (Hammond et al., Immunity 2018)

< Useful resource tools



Myeloid cell types in the CNS
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Under homeostatic conditions, the brain hosts several heterogeneous populations of myeloid cells that are located at distinct sites,
where they execute homeostatic and surveillance tasks.

Within the brain parenchyma, microglia (part a) with small delineated processes actively screen the intraneuronal space for
incoming threats, whereas macrophages can be found in the outer boundaries of the brain, such as the choroid plexus (part b),
perivascular space (part ¢) and in the meninges (part d).

Blood-derived (part e) are present at low numbers in the same locations as macrophages.

Prinz and Priller. Nature Reviews Neuroscience volume 15, pages 300-312 (2014)



Embryonic and postnatal development of microglia in mice
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Microglia and brain border macrophages (which reside in the perivascular space, meninges, and
choroid plexus) are derived from the same pool of yolk sac hematopoietic progenitors and migrate to
the brain at the same time in development (Goldmann et al., 2016)

When microglia infiltrate the brain parenchyma and are exposed to brain-derived signals that they
achieve their unique identity

Prinz and Priller. Nature Reviews Neuroscience volume 15, pages 300-312 (2014)



Microglia functions

- Microglia are essential for maintaining the health and function of the brain

— During development:

O pruning synapses

modulating neurogenesis

phagocytosing apoptotic cells

regulating synapse plasticity and myelin formation

O OO

- In response to injury, pathology, or aging:

rapid proliferation

migration to the site of pathology

phagocytosis of cells and debris

production of the cytokines and chemokines necessary to stimulate microglia and
other brain and immune cells.

O O OO



Functional reprogramming of microglia and macrophages in response
to brain injury
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Under physiological conditions,microglia are continuously surveying their microenvironment. We have named this so-called ‘resting’ state of
microglia MO.

Neuronal dysfunction or damage can activate microglia to produce pro-inflammatory cytokines (M1-like polarization). Depending on the
degree of homeostatic disturbances, leukocytes (not shown) may be recruited from the bloodstream. Peripherally derived macrophages (purple)
and perivascular macrophages (PVMs) also participate in the inflammatory response.

As a result of the passage of time, the type of brain injury or environmental factors, microglia and/or peripherally derived monocytes and
macrophages may acquire an anti-inflammatory phenotype, which causes them to remove debris and promote regeneration (M2-like
polarization). This may entail the recruitment and differentiation of local stem and progenitor cells, such as oligodendroglial progenitor cells
(OPCs) for remyelination. However, it is important to note that the activation states of microglia and macrophages are not strictly dichotomous but

are part of a spectrum of functional states.
Prinz and Priller. Nature Reviews Neuroscience volume 15, pages 300-312 (2014)



Open question

In neurodegenerative diseases, microglia contribution is:

O beneficial but insufficient
L effective at early disease stages but lose their efficacy later on

O detrimental with disease progression

g ..

REVIEW

7 Microglia: Scapegoat, Saboteur,
or Something Else?

?
(
7 7 Adriano Aguzzi,’* Ben A. Barres,” Mariko L. Bennett®*
°
y Microglia are resident immune cells in the brain and spinal cord. These cells provide immune
surveillance and are mobilized in response to disparate diseases and injuries. Although microglial
activation is often considered neurotoxic, microglia are essential defenders against many

neurodegenerative diseases. It also seems increasingly likely that microglial dysfunction can
underlie certain neurological diseases without an obvious immune component.




Why single-cell RNA-seq?

— Heterogeneous cell populations currently isolated based on a small set of surface
markers : limited in resolving the heterogeneity, niche specificity, complexity

— Conflicting results regarding their role/profile during disease onset and progression

-> Different profiles based on the type of injury or disease

-> To identify and molecularly describe distinct groups of
microglia
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-> Definition of Disease Associated Microglia (DAM)



5xXFAD: five human familial AD gene mutations

O Contains 2 transgenes:

- mutant human amyloid beta (A4) precursor protein (APP) cDNA sequence (altered to include the APP
K670N/M671L (Swedish) + 1716V (Florida) + V7171 (London) Familial Alzheimer's Disease (FAD) mutations) inserted
into exon 2 of the mouse Thy1 gene.

- mutant human presenilin 1 (Alzheimer disease 3) (PSEN1 or PS1) cDNA sequence (altered to include the PS1
M146L + L286V FAD mutations) inserted into exon 2 of the mouse Thy1 gene

O Both transgenes were added together in equal proportions and co-injected into the pronuclei of
single-cell "C57/B6xSJL" hybrid embryos.

O Founders from the highest APP expressing line (Tg6799) were bred with (B6/SJL)F1 for more than
10 generations with stable germline transmission and expression of both transgenes,
demonstrating that these "5XFAD" mice breed as single transgenics.

@ Control Suggestions

Noncarrier
100012 B6SJLF1/]

https://www.jax.org/strain/006554



5xXFAD: five human familial AD gene mutations

PHENOTYPE CHARACTERIZATION

9mo 12mo 15mo 18mo+ Absent No Data

1mo 3mo 6mo

Absent.

Neuron loss in cortical layer 5 and subiculum.
Neuronal Loss

Amyloid deposition begins at 1.5 months and reaches high levels especially in subiculum
Plaques and deep cortical layers. AB42 also accumulates intraneuronally in an aggrepated form
within the soma and neurites starting at 1.5 months (Oakley et al., 2006).

Gliosis begins at 2 months (Oakley et al., 2006).

Synaptic markers synaptophysin, syntaxin, and PSD-95 decrease with age and are
Synaptic Loss significantly reduced by 9 and 12 months.

LTP is normal in young animals, but becomes impaired around 6 months (Kimura et al.,
2009); specifically, in hippocampal slices from < 4-month-old mice, I/O curves of
fEPSPs were not different from those of wild-type controls, but the 1/O responses at
Schaffer collateral-CA1 synapses at 6 months were impaired.

Changes in
LTP/LTD

Impaired spatial memory in Y-maze test at 4-5 months, Impaired stress-related memory,
specifically significantly lower levels of contextual freezing at 6 months. Impaired remote
memory stabilization at < 4 months.

Cogpnitive
Impairment

0 On the mixed C57BL/6 and SJL background (see MMRRC stock 34840, intraneuronal Abeta-
42 accumulation is observed starting at 1.5 months of age, just prior to amyloid deposition and
gliosis, which begins at two months of age.

o On a congenic C57BL/6J genetic background (see MMRRC stock 34848) it has been the
observation of the MMRRC that this phenotype is not as robust as that demonstrated in the
mixed C57Bitps:/anwal. 24 briyaiciigooeasd

https://www.alzforum.org/research-models/5xfad


http://www.mmrrc.org/catalog/getSDS.php?mmrrc_id=34840
http://www.mmrrc.org/catalog/getSDS.php?mmrrc_id=34840
http://www.mmrrc.org/catalog/getSDS.php?mmrrc_id=34848

Experimental plan

8,016 CD45*single cells from full brain phenograph
A
> Single cell suspension of Genotype
immune cells Ji MARS-seq P 7
o> AD
age and WT X3 ® %o - o
©%g® /
sex-matched > o >
>, eSe
AD X3 S Phenotype
massively parallel single-cell RNA-seq
6-month-old
whole brain
Experimental Models: Organisms/Strains
Mouse: 5XFAD Tg6799 The Jackson Laboratory 34840-JAX
Mouse: C57BL/6 WT Harlan N/A
Mouse: SOD1-G93A The Jackson Laboratory 002726
Mouse:Trem2 Generated in the Laboratory of N/A

Dr. Marco Colonna

Phenograph = based on t-SNE analysis (t-Distributed Stochastic Neighbor Embedding)
500 most variable genes to define subpopulations

clusters annotation was done manually based on the expression of a large number of hallmark genes, for
example, CD3 for T cells, S1I00A6 for granulocytes and Hexb, Cst3 and Cx3crl for microglia

Keren-Shaul et al., Cell 2017



10 clusters

Clusters
- § .-
E Camp ™
*Li 5100 I I_._
i | 3
R | hill
i Trbe2 | "R
o Rag1 | i . :1
g B Cd?gbL ‘ .E‘ _:]
. cars | N A
” ] $100a4 | § | HI] i'H 3
% g Cd163 | 1 1" =
O o ‘m'r’ Mrc1 I ma j E
Q) , " LPI | i ﬂ oy j i %
S et [ cstr [ NIRRT
g ' Ctsd [, ol ] j
C>5 cdg | & ] ”
- Cx3cr1 | bl 5
0 = ;
3 P2ry12 | bt Ll L™
E oo ~—
~ _ Hexb | IR EE Ny
N I IV V VIV VID IXX
The expression level (Unique Molecular Identifier; UMI count) of selected
Cells (n=8016) marker genes for each cluster (I-X) is shown on the right.

unsupervised graph-based clustering

cluster I: alarge group of microglia cells

clusters Il (4.2%) and Il (2.8%): two small groups of cells, which displayed expression
of microglial genes (Cst3 and Hexb) with an additional unique signature of lipid
metabolism and phagocytic genes such as Apolipoprotein E (Apoe), lipoprotein
lipase (Lpl), and Cystatin F (Cst7)

cluster IV: perivascular macrophage group

cluster V: monocyte state
clusters VI-VIII: several lymphocytes sub groups (B cells, T cells, natural killetdhNshoels:) cell 2017



Contribution of wild-type versus 5XFAD to each group of cells

% of CD45+ cells

Cluster | Cluster Il Cluster Il Cluster IV Cluster V Cluster VI Cluster VII Cluster VIII Cluster IX Cluster X
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Dot plot showing the percentage of WT (beige) or AD (red) cells out of the total CD45+ cells in each of the clusters identified in (B).
Each data point, circle (female) or square (male), represents an independent single-cell experiment performed on an individual animal.

similar percentage of cells in perivascular macrophages, monocytes, group |
microglia, granulocytes, lymphocytes

group Il and Il microglia represent distinctive microglia states observed in AD,
but not in the WT background, and we define this state as

disease-associated microglia (DAM)

Keren-Shaul et al., Cell 2017



Projection of the cells using t-distributed stochastic neighbor embedding (t-SNE)

Microglia1
Microglia2
Microglia3
Perviascular Mf
Monocytes
Mature B-cells
Immature B-cells
T/NK cells

® Granulocytes1

¢ Granulocytes2

tSNE dim2

tSNE dim1

- the DAM group in proximity to the microglia territory and distinct from the
monocytes and perivascular macrophages

- Group 3 > group 2: group 2 intermediate state

Keren-Shaul et al., Cell 2017



DEGs between DAM (microglia3) to homeostatic microglia (microglial)
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- key marker genes of microglia, e.g. Hexb and Cst3: group Il and Il similar to group |

- reduction in the expression levels of several microglia homeostatic genes, including the
purinergic receptors P2ry12/P2ry13, Cx3crl, and Tmem119

- genes are upregulated in DAM including several known AD risk factors, such as
Apoe, Trem2, Ctsd

- Table S2: top 500 different genes group 3vs group 1 (471 UP, 29 DOWN)

Keren-Shaul et al., Cell 2017



Time course of DAM isolated from 5xFAD

1,358 CD11c+ cells

Single cell suspension of
MARS-seq
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- no cells with a DAM signature that are CD11c negative

- CD11c* cells: mixture of various myeloid cells, including
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Keren-Shaul et al., Cell 2017



Transition from homeostatic microglia to DAM population as a function of disease
progression
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projection of the 893 single cells taken from the AD mouse at each time point along disease
progression (1, 3, 6, 8 months; color) on the background of all microglia/all time points (gray).
x axis refers to the transition axis from homeostatic microglia to DAM

Keren-Shaul et al., Cell 2017



Transition from homeostatic microglia to DAM population as a function of disease
progression: key markers

D
Cx3cr1 Apoe Cd9

some genes do not change their
expression as a function of microglia
transition (Hexb)

some genes display a decrease in gene
expression along this activation axis
(Cx3crl)

some show an increase in their gene
expression (Apoe, Lpl, CD9, Cst7,
Trem2)

Keren-Shaul et al., Cell 2017



Two brain regions: cortex vs. cerebellum
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Keren-Shaul et al., Cell 2017



Localization of DAM
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22.3% overlap in AD vs. 6% in WT mice

DAM population cells localized in the vicinity of the AB plaques

Keren-Shaul et al., Cell 2017



DAM are phagocytic : Lp/ staining
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microglia containing Thioflavin-S-labeled particles are mostly

clustered in close vicinity of AB plaques
Keren-Shaul et al., Cell 2017



DAM are also present in ALS mouse model

3,194 CDA45* cells from the spinal cords of mSOD1 (G93A) mice at
early (day 80) and late (day 135) disease progression stages
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DAM and Trem2

Single-cell RNA-seq of DAM, using CD11c and CD11b enrichments, from whole
brains of Trem2+* 5XFAD and Trem2”- 5XFAD mice together with matched WT and

Trem27 controls, altogether 3,864 cells

Homeostatic
microglia

Stage 1
DAM

Stage 2
DAM
AD

spectrum of transcriptional states from
homeostatic microglia toward the DAM

state

Trem2 +/+

Trem2 -/-

. .
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® CD45°YCD11b*

® CD45°"CD11b* CD11c*

the intermediate state, which expressed only a partial set of the
DAM program, Tyrobp, Apoe, B2m, and Ctsd, but not the
majority of the lipid metabolism and phagocytic pathway genes
(e.g., Lpl), was much more abundant in the Trem2 knockout

experiment.

Keren-Shaul et al., Cell 2017



Conclusion

Homeostatic 2 - o Stage 1DAM Stage 2 DAM
microglia / AD Agmﬁ ) (Trem2 independent) (Trem2 dependent)
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~ ) +/ PN TREM2

- Plaque ;E

Hexb | Sparc {4 Cx3cr1 1 Apoe 1T Trem2 1T Csf1
Cst3 Tmsb4x 4 P2ry12 1 B2m 1T Axl 1T Cclé
Cx3cri P2ry12 4 Tmem119| 1 Fth1 1T Cst7 1 ltgax
Ctsd C1lqga 1 Tyrobp T Lyz2 1 Ctsl T Clec7a
Csfir Cigb 1 Ctsb 1 Lpl 1T Lilrb4
Ctss 1T Ctsd 1 Cd9 T Timp2

Figure 6. DAM Are Regulated through a Two-Step Activation Mechanism

Schematic illustration showing microglia switching from homeostatic to stage 1 DAM (Trem2-independent) and stage 2 DAM (Trem2-dependent) following
signals such as those associated with AD pathology, aging, and ALS pathology. Key genes involved in each stage are shown below each condition. Arrows
indicate up (red) or down (green) regulation of the gene in the specific stage.

step 1: initial activation through an unknown mechanism leads to an intermediate state in a
Trem2-independent mechanism

step 2: secondary activation signal that is Trem2-dependent and involves upregulation of
phagocytic and lipid metabolism genes such as Cst7 and Lpl

-=> Production of new research (therapeutic) tools based on specific markers

Keren-Shaul et al., Cell 2017
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Experimental plan: meta-analysis

- gene expression studies of acutely isolated microglia/myeloid cells from adult mouse brains
(or spinal cords)

= most common strategies were selection of CD11b*, CD11b*;CD45™, Cx3crl::GFP* cells by
fluorescence-activated cell sorting (FACS)

— at least 3 replicates per treatment group

— database included 18 datasets spanning 69 different conditions and 336 individual
expression profiles across a range of

* neurodegenerative, neoplastic, inflammatory, infectious disease models
e different developmental stages,

e different brain regions,

* myeloid cell subtypes

Friedman et al., Cell Reports 22, 832-847, January 16, 2018



45 modules of co-regulated genes

A 336 purified myeloid expression profiles, from
69 conditions across 18 studies
< b
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Details in Figure S5

Heatmap of within-study-normalized gene expression (Z score) for the 777 genes (rows) differentially
expressed in at least 7 comparisons in 18 different studies (columns).
Hierarchical clustering identified 45 modules of co-regulated genes

= Data S1: excel file with list of all genes/all studies
Friedman et al., Cell Reports, 2018



Module 26: proliferation-related
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82 genes of module 26, which are enriched for proliferation-associated genes - all
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Module 26: proliferation-related
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Module 18: interferon-related (24 genes)
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Module 10, 12, 13, 17: LPS-related
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Module 24, 25, 36, 37: neurodegeneration-related 134 genes
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- neurodegeneration-related modules represent a special activation state of brain myeloid cells largely
distinct from that induced by microbial challenge and characterized by altered environmental engagement



Microglia vs. peripheral/infiltrating : microglia module (6)
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microglia module (module 6) were unique in their specific elevation in
parenchymal microglia relative to perivascular macrophages

1 Virtually all perturbations reduced the expression of the microglia module
(and the brain myeloid modules generally), with modest decreases in
neurodegenerative models and pronounced reductions with LPS treatment

—> either due to a change in gene expression or to partial replacement of the
sorted myeloid compartment with non-microglial cells?



Microglia vs. peripheral/infiltrating : macrophage module (45)
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macrophage module (module 45):
- only glioma showed pronounced elevation of these genes

- expression of the microglia and macrophage modules was inversely coordinated
during brain myeloid cell development, with macrophage expression gradually
reduced and microglia expression gradually increased from embryonic through
perinatal to adult brains



Microglia vs. peripheral/infiltrating : monocyte module (43-44)
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See Figure 1F for dataset identifiers, category legend, and control comparisons

Monocyte, neutrophil module (module 43-44):.
- mostly unchanged in neurodegeneration models

- robustly elevated in LPS and glioma models, as well as in cerebellum



New Microglial Subpopulations Identified by Gene Modules
Open question:

these modules could be induced concurrently within individual cells

or
whether they represented discrete (mutually exclusive) activation states

we examined their expression in a recently published single-cell RNA-seq survey
of CD45* immune cells from the 5XFAD mouse model 2 Keren-Shaul et al., 2017



Myeloid Gene Modules Represent Distinct Cell Types and Activation States
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- identified other interesting clusters of microglial cells: discrete, possibly exclusive, microglial states

interferon-related module (cell cluster 13, Figure 6D),
the proliferation module (cell cluster 16, Figure 6C),
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interferon-related module (cell cluster 13, Figure 6D),
the proliferation module (cell cluster 16, Figure 6C),
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- identified other interesting clusters of microglial cells: discrete, possibly exclusive, microglial states

interferon-related module (cell cluster 13, Figure 6D),
the proliferation module (cell cluster 16, Figure 6C),



Cst7 data from http://research-pub.gene.com/BrainMyeloidLandscape/
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Experimental plan
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Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson Labs IMSR_JAX:000664

Single-cell RNA-seq of total 76,149 mouse microglia, 3-4 mice/age, 41 mice in total

comparable sequencing depths (40,000-60,000 reads/cell) and had a
similar median unigue molecular identifier (UMI) count and median gene
number in all ages and conditions

identify, curate, and remove from analysis contaminating cells (including
neurons, endothelial cells, and other cell types)

independent components that captured batch or replicate effects were
removed before clustering analysis



tSNE projection : 9 microglia clusters

41 mice
29 males F R .
12 females % ‘5 . Mono/Mac
204 | 76,149 cells : § el
10¢ i --‘- . “‘:‘ : -.‘.. “ . . it S .
2b it | BN
N s ;M.%- el r;" T, X ¢ Tb
% 0 ST -73. :
@ 2a - :
. 1 : ;'.
-104 . \'
.*x
=20+ .
;8
_30. ] H ) | L )
20 ~10 0 10 20

tSNE plot of 76,149 cells
In total, 9 microglia clusters and 1 monocyte/macrophage (Mono/Mac)-
containing cluster were identified across all ages and conditions, including
injury



Distinct Subpopulations of Microglia Peak in Number during Early

. P30 D
41 mice
29 males . \
12 females R ¢ x« Mono/Mac
204 | 76,149 cells ; 3 * : %
L
o]  THRACaR L R e
2b) L A e 5
o B 1 T &
"'zJ 0 ; = . Ta £ > a
@ 2a A . s P100 P540 Injured WM
yed r 1 5 ! s S o e, 3
10 ".';
.20 >
D o0 aD OO
20 ,\h'b}Q Q"JQ.@QQ:\Q\Q:{\@:@*
-20 -10 0 10 20 ; : 4 <R S8 @b
tSNE1 000000\6 $

youngest ages (E14.5 and P4/P5) - clusters 1-6
juvenile — adult - clusters 7ato 7c

aged - cluster 8

injured - cluster 9

greatest microglial diversity at the youngest ages
considerably less diversity in juveniles (P30) and adults (P100)

both aging and injury caused a redistribution of microglial states
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Canonical microglial genes

E Ferls P2ry12 Cx3cr1 Trem2

Log counts Log counts? Log counts/ 5
10,000 cell = 3 10,000 cell 10,000 cell 10,000 ceit
transcripts transcripts transcripts

Canonical
microglia

canonical microglial genes (Fcrls, P2ry12, Cx3crl, Trem2, and Clga) were highly expressed by most of
the analyzed cells,

but only three (C1qa, Fcrls, Trem2) were uniformly expressed in all clusters

P2ry12, Cx3crl1, and Tmem119 (not shown) transcripts were expressed at much lower levels or not at
all in certain clusters of microglia from the developing brain



Gen

Cluster specific

es uniques to specific microglial states
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youngest ages (E14.5 and P4/P5) - clusters 1-6
Juvenile — adult - 7ato 7c no specific genes

Aged - 8
Injured - 9 interferon, alpha-inducible protein 27 like protein 2A

- multiple specific and definable states that change over the course of
development, aging, and injury



Genes uniques to monocyte/macrophage
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Non-microglial macrophages and monocytes uniquely expressed certain genes



Identification of Ms4a7-Expressing Microglia in the Embryonic Brain
that Resemble Brain Border Macrophages = E14.5
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macrophage markers (Mrcl, Ccrl, Dab2) and those
found in mature microglia (P2ry12, Fcrls, Serpine2

membrane-spanning 4-domains subfamily A [cluster 7b]), suggesting an intermediate state

(MS4A)



Specialized Axon Tract-Associated Microglia (ATM) Appear during a
Restricted Developmental Window = P4/5
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of the corpus callosum in the forebrain, as
well as in distinct clusters in the axon tracts
of the cerebellum

The axon tracts where ATM were
concentrated will eventually become
heavily myelinated, but ATM are largely
gone before myelination occurs.
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Sex Has No Impact on Microglial Diversity or the Number of Cells in
Each Subpopulation

microglia from male and female mice at three major developmental
ages: E14.5, P4/P5, and P100

P100

n=49445cells E14.5

20

tSNE2

-20

Female © '
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- showed that microglial diversity was largely unaffected by sex during normal
development (only small difference in cluster Sx6)



Small Populations of Inflammatory and Interferon-Responsive
Microglia Emerge in the Aged Brain: OA2 and OA3 clusters

Direct comparison of P100 and P540 microglia
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Two microglia clusters enriched in aging mice (aging clusters OA2 and OA3), along with
one monocyte and macrophage cluster (Mono/Mac)



Aging effect: OA2 cluster = inflammation
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OA2 microglia expressed a number of inflammatory signals that were not normally expressed by other
populations of microglia in vivo:
cystatin F (Cst7), chemokines Ccl4 and Ccl3, as well as the inflammatory cytokine interleukin 1 beta (1/1b)

OA2 microglia are distributed throughout the adult and aged brain

- This increase, coupled with the overall increase in the inflammatory environment in the aged brain
(Franceschi et al., 2007), suggests that this small subpopulation of microglia contributes to age-related

brain inflammation



Aging effect: OA3 cluster = interferon-response
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Cluster OA3 upregulated interferon-response genes including interferon induced transmembrane protein 3 (Ifitm3),
receptor transporter protein 4 (Rtp4), and 20-50 oligoadenylate synthe- tase-like 2 (Oasl2)

OA3 profile restricted to a small subset of microglia

- the number of microglia that occupy these states form only a small fraction of microglia, suggesting that the vast
majority of microglia are unaltered or only slightly altered by aging and that local cues like blood brain barrier
compromise (Montagne et al., 2015) or microinfarcts (Smith et al., 2012) could drive state changes rather than a brain-
wide shift.



Injury-Responsive Microglia (IRM) in Demyelinated Lesions Exhibit
Multiple Activation States

—> focal demyelination of the subcortical white matter in mice is triggered by injection
of lysolecithin (LPC)
- white matter from LPC- and saline-injected adult (P100) mice + uninjected P100
whole-brain control samples were collected and processed in parallel

—> 2 major clusters:
- Injury-responsive cluster 1 (IR1): control microglia
- IR2: microglia from LPC-injected demyelinated lesions
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Injury-Responsive Microglia in Demyelinated Lesions Exhibit Multiple

Activation States
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Comparison of ATM - DAM - IRM

overlap in genes that were upregulated 1.5-fold or higher with a p value of less than 1E-10 - Table S2

a Development Disease Pathology White Matter Lesion

55);-6\ {%_]6\
G Gy > o
P4/P5, WT Adult, 5XFAD \ Adult, WT
=

Ifi2712a
Ifitm3

124 /
x/ IRM uniquely upregulated

3 p !
\\ﬂ/,/ interferon response genes

ATM upregulated
genes found in
development

—> all three groups shared a common transcriptional signature of 12 core
genes including Sppl, Lpl, and Apoe
—> each group also expressed a number of unique genes.



Cst7 data from www.microgliasinglecell.com
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Conclusion
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- microglia assume many distinctive states that change over time, states that can
be defined by unique markers and localized within the brain.

- information required for the development of new tools—including new Cre driver
lines

- specific roles of each microglial state will need to be tested directly, using genetic
manipulation and other tools as they become available

—> a deeper mechanistic insight into microglia signaling mechanisms



Summary useful tools for further data mining/visualization

-  DAM microglia (Keren-Shaul et al., Cell 2017):
Table S2: top 500 different genes in DAM (471 UP, 29 DOWN)

- Meta-analysis (Friedmann et al., Cell reports 2018)
Data S2 (or S3): excel file with list of all genes/all studies (43MB)

Website: http://research-pub.gene.com/BrainMyeloidLandscape/

- Development and disease (Hammond et al., Immunity 2018)

www.microgliasinglecell.com



Thank you!
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