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Huntington‘s Disease (HD) 
• Autosomal dominant neurodegenerative disorder 
• Prevalence: 5-10 per 100,000 (western countries) 
• Clinical: involuntary movements, cachexia, psychiatric symptoms, dementia 
• Mean age of onset: 40y (2-85y) /  Mean duration of illlness 17y (2-45y) 

 
• selective loss of GABAergic medium spiny striatal neurons, as well as glutamatergic 

cortical neurons that project to the striatum 
 

• Gene: Huntingtin (HTT) 4p16.3, 185 kb, 67 exons  
• Expanded CAG repeat in the N-terminus of the HTT gene (exon 1) 



Animal models of HD – Strain differences 
Model Construct design Behavioral phenotypes Neuropathology 

Promoter and construct PolyQ length Onset Severity Specificity Severity 

Fragment transgenic models 
R6/2 Human HTT promoter, exon 1 144 (variable) Early +++ Widespread +++ 

N171-82Q Murine prion promoter, amino acids 1–
171 

82 Early +++ Widespread +++ 

GFAP-HD Human GFAP promoter, amino acids 
1–208 

160 Adult ++ Not assessed Not assessed 
  

RosaHD Floxed-STOP Rosa locus, exon 1 103 Promoter-dependent Promoter-dependent 

Full-length human genomic transgenic models 
YAC128 Human HTT locus 128 Adult ++ Region-specific ++ 

BACHD Human HTT locus with exon 1 floxed 97 Adult ++ Region-specific ++ 

Knock-in models 
HdhQ111 Human exon 1 111 Late adult + Region-specific + 

CAG140 Human/murine exon 1 hybrid 140 Late adult + Region-specific + 

Hdh(CAG)150 Murine exon 1 150 Late adult + Region-specific + 
zQ175 Human/murine exon 1 hybrid 175 Early ++ Region-specific ++ 

Lee et al. FEBS J. 2013 Sep;280(18):4382-94. 



Animal models of HD 

Cre/LoxP 
conditional mouse 
models and cell 
type-specific 
promoter-driven 
mHtt models 

Lee et al. FEBS J. 2013 Sep;280(18):4382-94. 



 
Combine behavioral neurobiology insight integrated with advances in robotics and computer vision and the power 

of bioinformatics to process and analyze massive temporal and vectorial datasets using probabilistic causal 
interference algorithms 

 
 

„High-throughput - High content – Unbiased“ 



Behavioral high-throughput system: IntelliCage 

IntelliCage unit (New Behavior AG) 



Behavioral high-throughput system: SmartCube 

• Predicts the potential utility of CNS active compounds by comparing their behavioral 
signature to known neuropsychiatric drug signatures 

• Uses robotics, computer vision, proprietary algorithms and bioinformatics to 
- Capture and analyze >2000 behavioral features per session (locomotion, trajectory 

complexity, body posture and shape, simple behaviors and behavioral sequences) 

- Create drug signatures (therapeutic utility, potential side effects, additive/synergistic 
effects) 

• Capacity tom test 10,000 compounds at multiple doses per year 
 

 

 

 



Behavioral high-throughput system: SmartCube 
Figure 1 



Behavioral high-throughput system: SmartCube 
Figure 2 



Behavioral high-throughput system: SmartCube 
Figure 3 

Visualization of a binary discrimination in the ranked de-correlated 
feature space. 
 

The “recovery signature” graph  
 
 



Behavioral high-throughput system: SmartCube 
Figure 4 

Age specific disease signature of 
the R6/2 mouse model. 
 
Ranking algorithm: 
Difference in feature values and 
feature ranks (red curve with green 
squares). 
 
  



Behavioral high-throughput system: NeuroCube 

• Subjects are allowed to freely walk for 5 min in the NeuroCubes system. Digital video 
acquisition and processing through computer segmentation algorithms.  
 fitted parameters analyzed to extract clips of locomotor behavior.  
 extracts information about gait geometry (stride length, step length and base width) and 

gait dynamics (stride duration, step duration and swing duration).  
 

• In addition, data acquisition of: 
• Average Speed of the animal. 
• Paw Image intensity, paw contact area, perimeter of contact zone, and paw diameter. 
• Paw Position relative to the center of the body is registered. 
• Body Position as it pertains to movement of the subject.  Rhythmicity and limb 

coordination 
 

 
 



Behavioral high-throughput system: NeuroCube 

CCI: chronic constrictive nerve 
injury model of neuropathic pain 

Figure 5 

Pooled paw position  



• IntelliCage:  
12/12h light/dark cycle; water available in the corners, food freely available, 8 units for PhenoCube, 
challenging mice with intramaze spatial cues (laminated paper with stripes, two climbung rods, 
rectangular object in the center) 
16-h water deprivation (home cage)  72-test session: placement in IntelliCage  
Habituation: water freely available in the corners for 6h  
measures corner visit, nose-poking frequency, alternations) 
 

Behavioral high-throughput system: PhenoCube 



Alternation: two adjacent active corners for each subject,  train animals to switch between, 
alternate 1, 2, 1, 2, …(calculated within an interval of leaving an active corner and visit a correct corner 
in 113s or less), nose-poking: only left-hand side provided reward (8s access to water) in active corner 
1, right-hand side  in 2 (measures frequency of alternation, nose pokes to the correct side, % of correct 
initial nose pokes in each visit) 
 
 
 
 
Computer vision data: distance traveled,  
time in locomotion, immobility time, climbing time, 
rearing, huddling, occlusion (two or more mice togethet) 
 

Behavioral high-throughput system: PhenoCube 



Behavioral high-throughput system: PhenoCube 
Figure 6 





Figure 1 

Figure 2 



Figure 3 



Figure 4 

CD44-sorted hGPCs colonized and replaced 
endogenous glia within the R6/2rag1/ striatum 



Figure 5 Figure 6 8 weeks 11 weeks 



Suppl. Figure 4 SmartCube Suppl. Figure 5 NeuroCube 



Figure 7 Figure 8 
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Animals 
• Subjects:  

HET mutant mice from six KI lines 
corresponding WT littermates 
 

• Subject selection 
on the basis of of CAG repeats (allows Gaussian  
distribution) 
 

• Starting point 
16 animals/genotype/sex/line 
 

• Husbandry:  
8-10 animals in experimental cages (rat Opticage); half HET, half WT, same sex 
Removal of extra animals to create final  experimental cage (4/4) 
Multi-class analysis: mice with complete dataset (20-30% mice excluded) 

 

  CAG repeat 
mean  

Standard 
deviation  

Min CAG repeat  Max CAG 
repeat  

HdhQ20  
HdhQ50  
HdhQ50neo  
HdhQ80  
HdhQ92  
HdhQ111 
CAG 140 
zQ175  

20.01  0.25  18  21  
50.34  0.58  49  52  
50.19  0.36  49  51  

87.08  2.26  80  92  
102.60  2.13  98  110  
125.35  3.90  110  134  
147.58  6.18  136  181  
204.08  5.02  189  215  



Figure 1 Figure 2 

Discrimination between wild-type and HET mice.  

HET mice from the zQ175 line (blue) compared to wild-type 
littermate controls (red).  

Discrimination values for all CAG models against the 
corresponding WT controls 

Performance of the CAG model during training and testing as assessed by 
regression on predicted versus observed CAG-repeat length. 

regression lines black 
identity lines blue) 

Top: the performance  of the CAG models during prediction of  CAG-repeat 
length for one example (LOOCV)  not included in the training set 
 
 Bottom: to challenge the combined-sex model in a more stringent manner, 
we left out a whole line and trained with the remaining lines 



Figure 3 Figure 4 

Prediction of the ‘blinded line’ by the SVR CAG model (10-month-old 
mice).  

Projection of all Q lines onto the decorrelated ranked feature (DRF) plane 
defined by Q20 and Q175 lines at 6 months of age.  

Supplementary Figure 3 



Figure 5 

Top-feature score changes across different CAG-repeat lengths and ages.  



Figure 6 

LOOCV performance of the age model during training and testing as assessed by regression 
on the predicted versus observed age.  



• Tasks which tackle higher cognitive function have to be performed separately. 
• Signatures for specific drugs as well as for disease models could be assessed in an animal-

friendly high-throughput manner 
• Signatures give rise even to subtle changes in behavior 
• Signatures indicate rescue of disease features and/or potential treatment 
• Selected behavioral signatures for age and CAG-repeat length could robustly distinguished 

between mouse lines  
• The correct repeat length of a blinded mouse line could be predicted 
• Sufficient discriminatory power to accurately predict genotype required combined analysis of 

>200 phenotypic features.  
• Results suggest that autosomal dominant disease-causing mutations could be predicted 

through the use of subtle behavioral signatures that emerge in large-scale, combinatorial 
analyses.  

• Provides an open data platform that could be shared with the research community to aid 
efforts focused on understanding the pathways that link behavioral consequences to genetic 
variation in Huntington’s disease.  

 

Summary 
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