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Huntington's Disease (HD)

Autosomal dominant neurodegenerative disorder

Prevalence: 5-10 per 100,000 (western countries)

Clinical: involuntary movements, cachexia, psychiatric symptoms, dementia
Mean age of onset: 40y (2-85y) / Mean duration of illlness 17y (2-45y)

selective loss of GABAergic medium spiny striatal neurons, as well as glutamatergic
cortical neurons that project to the striatum

Gene: Huntingtin (HTT) 4p16.3, 185 kb, 67 exons
Expanded CAG repeat in the N-terminus of the HTT gene (exon 1)



Animal models of HD — Strain differences

Full-length human genomic transgenic models

Lee et al. FEBS J. 2013 Sep;280(18):4382-94.



Animal models of HD

A
RosaHD x Emx1-Cre:
Selective mHtt-exonl expression in
cortical pyramidal neurons Pyramidal
=> mild deficit
RosaHD x Nestin-Cre: GFAP-HD (Htt-160Q):
Pan-neuronal mHtt-exon1 expression :‘::m”‘:"““'mm expression in
deficit rocyt
ladicibiy g = neuropathology observed Cre/LoxP
Selective mHtt-exon1 expression in mHtt expression in both neurons models and cell
striatal neurons and astrocytes _ e
=> mild deficit = exacerbated HD symptoms type specmc_;
MSN promoter-driven
mHtt models
B SUMO SUMO

C;SQ:;S C;:;S Cjza C;gs Casp3
Q@ WO @HE Ad
QQ...QQPP...RP...**K...DSV " *D...DEE""D...DLN**“D...IVL*DGT*

2D., D...
Blocking mutations: A A R A A A A A
Mimicking mutations: D D

Red—exacerbate; Blue—ameliorate; Black—no/minimal effect on pathogenesis of HD

(®phosphorylation @ oxidation ubiquitinization m SUMOylation acetylation j"‘ cleavage site of caspases

Lee et al. FEBS J. 2013 Sep;280(18):4382-94.



European Journal of Pharmacology 753 (2015) 127-134

Contents lists available at ScienceDirect |Il i

European Journal of Pharmacology 8][]

R |
journal homepage: www.elsevier.com/locate/ejphar ;

Reprint of: Highthroughtput analysis of behavior for drug discovery™ @,Cmmrk

Vadim Alexandrov ', Dani Brunner*', Taleen Hanania, Emer Leahy

PsychoGenics Inc. Tamytown, New York, U5sA

Combine behavioral neurobiology insight integrated with advances in robotics and computer vision and the power
of bioinformatics to process and analyze massive temporal and vectorial datasets using probabilistic causal
iInterference algorithms

, High-throughput - High content — Unbiased*”



Behavioral high-throughput system: IntelliCage

IntelliCage unit (New Behavior AG)



Behavioral high-throughput system: SmartCube

Predicts the potential utility of CNS active compounds by comparing their behavioral
signature to known neuropsychiatric drug signatures

Uses robotics, computer vision, proprietary algorithms and bioinformatics to

- Capture and analyze >2000 behavioral features per session (locomotion, trajectory
complexity, body posture and shape, simple behaviors and behavioral sequences)

- Create drug signatures (therapeutic utility, potential side effects, additive/synergistic
effects)

Capacity tom test 10,000 compounds at multiple doses per year



Behavioral high-throughput system: SmartCube
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Behavioral high-throughput system: SmartCube

Figure 2
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Behavioral high-throughput system: SmartCube

Figure 3
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Figure 4
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Behavioral high-throughput system: SmartCube
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Behavioral high-throughput system: NeuroCube

* Subjects are allowed to freely walk for 5 min in the NeuroCubes system. Digital video
acquisition and processing through computer segmentation algorithms.
[ ] fitted parameters analyzed to extract clips of locomotor behavior.

[ ] extracts information about gait geometry (stride length, step length and base width) and

gait dynamics (stride duration, step duration and swing duration).

* In addition, data acquisition of:

Average Speed of the animal.

Paw Image intensity, paw contact area, perimeter of contact zone, and paw diameter.
Paw Position relative to the center of the body is registered.

Body Position as it pertains to movement of the subject. Rhythmicity and limb
coordination



Behavioral high-throughput system

Figure 5
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Behavioral high-throughput system: PhenoCube

* IntelliCage:

12/12h light/dark cycle; water available in the corners, food freely available, 8 units for PhenoCube,

challenging mice with intramaze spatial cues (laminated paper with stripes, two climbung rods,
rectangular object in the center)

16-h water deprivation (home cage) [_I72-test session: placement in IntelliCage

[Habituation: water freely available in the corners for 6h Habituation
measures corner visit, nose-poking frequency, alternations) 7 <
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% ©
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On Entry: Both doors open
On NP: No effect

On Exit: Doors close



Behavioral high-throughput system: PhenoCube

[Alternation: two adjacent active corners for each subject, [Irain animals to switch between,
alternate 1, 2, 1, 2, ...(calculated within an interval of leaving an active corner and visit a correct corner
In 113s or less), nose-poking: only left-hand side provided reward (8s access to water) in active corner
1, right-hand side in 2 (measures frequency of alternation, nose pokes to the correct side, % of correct
Initial nose pokes in each visit)

Alternation

Computer vision data: distance traveled, e
time in locomotion, immobility time, climbing time, e
rearing, huddling, occlusion (two or more mice togethet)

On Entry: Nothing
On NP to correct side:
Door opens for 8s
On Exit:  Door closes
Correct corner switches



Behavioral high-throughput system: PhenoCube

Figure 6
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Figure 1
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Figure 3
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Figure 4
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Table 2 | Engraftment of CD44 © GPCs in R6/2 x ragl 7/~

mice.
Survival % % Total cells hNA* per mm?
time GFAP™ Olig2 ™" striatum

(n=4)

20 weeks 1703 452x78 77,756x21,000 16,65113,694

hM&, human nuclear antigen.
Data presented as means £ s.e.m.'s.

CD44-sorted hGPCs colonized and replaced
endogenous glia within the R6/2rag1/ striatum



Figure 5 Figure 6 8 weeks 11 weeks
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Suppl. Figure 4 SmartCube
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Figure 7
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ARTICLES
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Large-scale phenome analysis defines a behavioral
signature for Huntington’s disease genotype In mice
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Animals
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Figure 1
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Figure 2

Predicted CAG-repeat length

Performance of the CAG model during training and testing as assessed by
regression on predicted versus observed CAG-repeat length.
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Figure 3 Figure 4

Prediction of the ‘blinded line’ by the SVR CAG model (10-month-old Projection of all Q lines onto the decorrelated ranked feature (DRF) plane
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Figure 5

Top-feature score changes across different CAG-repeat lengths and ages.
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Figure 6

LOOCYV performance of the age model during training and testing as assessed by regression
on the predicted versus observed age.
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Summary

Tasks which tackle higher cognitive function have to be performed separately.

Signatures for specific drugs as well as for disease models could be assessed in an animal-
friendly high-throughput manner

Signatures give rise even to subtle changes in behavior
Signatures indicate rescue of disease features and/or potential treatment

Selected behavioral signatures for age and CAG-repeat length could robustly distinguished
between mouse lines

The correct repeat length of a blinded mouse line could be predicted

Sufficient discriminatory power to accurately predict genotype required combined analysis of
>200 phenotypic features.

Results suggest that autosomal dominant disease-causing mutations could be predicted
through the use of subtle behavioral signatures that emerge in large-scale, combinatorial
analyses.

Provides an open data platform that could be shared with the research community to aid
efforts focused on understanding the pathways that link behavioral consequences to genetic
variation in Huntington’s disease.
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