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Multicellular life relies on the coordination of cellular activities

Autocrine: intracellular communication. Cells secrete ligands
that are used to induce a cellular response through cognate
receptors for those molecules expressed on the same cell

Paracrine: no cell-cell contact

"" A — Juxtacrine: contact-dependent cell—-cell communication relies
on gap junctions or other structures

Endocrine: intercellular communication whereby signalling
molecules are secreted and travel long distances through
extracellular fluids such as the blood plasma; typical mediators
of this communication are hormones.




Direct measurements of proteins mediating CCls
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ldentifying the cell type of origin of proteins mediating CCls

Development & Aging Single-cell RNA-seq + TCR Atlas of the human thymus
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Insights from RNA-based CCl analyses

Use transcriptional profiling to decipher CCCs at any stage of
development and in any multicellular community

Cell
development

Cell—cell
communication

Tissue homeostasis

Many studies focus on:
- signals mediating cellular differentiation
- interactions of cell types within tissues and organs

- immune responses

Immune interaction in disease




Interactions drive cellular differentiation and organ development

Cell

development

An example of CCC networks interrogating how differentiated cells
influence haematopoietic stem cell fate revealed that ligand
production is cell type specific

This work reports the construction of a CCC
network that enables the discovery of cellular
properties associated with the production of
ligands and receptors.

Intercellular network structure and regulatory

motifs in the human hematopoietic system
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Interactions drive cellular differentiation and organ development

Cell

development

o

The analysis of brain CCC showed crosstalk involved in
neurogenesis and identified novel mediators, such as
apolipoprotein E (APOE),

a protein associated with
Alzheimer disease.

Utilizing EMBRACE they built a cell-cell communication map of the developing mouse
brain

They identified 1,710 unique ligand-receptor interactions between neural, endothelial,
mural, and microglial cells in silico

They confirmed the APOE-LDLR, APOE-LRP1, VTN-KDR, and LAMAA4-ITGB1 interactions
in the E14.5 brain
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Cell-type communication in tissue and organ homeostasis
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Tissue homeostasis

This revealed that CST3 and CXCL12 are mediators that
differentiate intercellular interactions in young and old
brains and

may modulate ageing-related processes

New roles of cells within a tissue and helped explain how ageing shape multicellular
organization.
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Immune interactions in disease

COVID-19 severity correlates with airway epithelium—immune cell interactions
identified by single-cell analysis
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Immune interaction in disease

The immune system receives signals from multiple tissues, but only CCCis also involved in the response to viral infections
specific signals allow it to coordinate healthy immune responses
Crosstalk between lung and T cells in CCC associated with severe acute respiratory
-> CCL2- and CX3CL1-mediated communication coordinate the syndrome coronavirus 2 (SARS-CoV-2) infection
recruitment and positioning of immune cells.
Interactions between immune and epithelial cells correlated with
COVID-19 severity.
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Correlation between the percentage of both ACE2+ ciliated and secretory cells in a given sample and the number of
ligand—receptor interactions of those cells with cytotoxic T lymphocytes
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Immune interactions in disease

Studying CCC within the tumour microenvironment provides opportunities to identify druggable pathways and develop new cancer therapeutics

CCC analyses have also elucidated cross-talk between

tumour and stroma
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@ Macrophages
i -

; » @ Monocytes

= > @ Neutrophils

N Epithelial cells

,

Clear correlations between:

the activity of specific ligand-receptor interactions

and

the degree of regulatory T cell infiltration and
tumour growth
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Statistical models to connect inferred CCC mechanisms to

cancer phenotypes

Measure phenotypes of interest
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Example of using expression products for measuring
intercellular communication and for finding relationships
between ligand—receptor pairs and tumour phenotypes.
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Deciphering CCC: Analysis workflow for inferring cell—cell interactions and communication from gene expression
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A versatile system to record cell-cell
interactions
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University School of Medicine, Stanford, United States; “Department of Pathology,
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Cell-cell interactions influence all aspects of development,
homeostasis, and disease.

In cancer, interactions between cancer cells and stromal cells
play a major role in nearly every step of carcinogenesis.

The ability to record cell-cell interactions would facilitate
mechanistic delineation of the role of the cancer
microenvironment.

They describe GFP-based Touching Nexus (G-baToN) which relies
upon nanobody-directed fluorescent protein transfer to enable
sensitive and specific labeling of cells after cell-cell interactions.

G-baToN is a generalizable system that enables physical contact-
based labeling between various human and mouse cell types,
including endothelial cell-pericyte, neuron-astrocyte, and diverse
cancer-stromal cell pairs.

The ability to track physically interacting cells with these simple and sensitive systems will greatly accelerate our understanding of the outputs of cell-cell
interactions in cancer as well as across many biological processes.




G-baToN enables cell-cell interaction-dependent labeling

Sender Receiver
Fluorescent signal could be transferred between neighboring cells
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G-baToN enables cell-cell interaction-dependent labeling

Time-lapse imaging showed rapid transfer and internalization of GFP by receiver cells
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G-baToN enables cell-cell interaction-dependent labeling
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* GFP transfer could be detected within five minutes of co-culture and was half-maximal after 6 hr
* GFP fluorescence in receiver cells decayed rapidly after isolation of touched receiver cells from sender cells-> transient labeling of receiver cells

* The fraction of labeled receiver cells was proportional to the number of sender cells

The transfer of GFP to aGFP-expressing cells is a rapid and sensitive method to mark cells
that have physically interacted with a predefined sender population

Figure 1



Fluorescence transfer efficiency is modulated by transmembrane domains and nanobody affinity

Three functional modules:

(1) the transmembrane domain of aGFP on the receiver cells
(2) the pairing between GFP and aGFP

(3) the transmembrane domain of sGFP on the sender cells
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relative to the original design



Fluorescence transfer efficiency is modulated by transmembrane domains and nanobody affinity

* LaG17-aGFP nanobody replaced with aGFP nanobodies with varying affinity for GFP
*  Minimal affinity required for GFP transfer
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Fluorescence transfer efficiency is modulated by transmembrane domains and nanobody affinity
The efficiency of GFP transfer correlated with GFP affinity

Permutation of the transmembrane domain of sGFP on the sender cell revealed that the rate of retrograde transfer of aGFP-VEGFR2-BFP from receiver to
sender cells was influenced by the sGFP transmembrane domain

The PDGFR transmembrane domain minimized bidirectional transfer and thus was the optimal transferring GFP into a aGFP receiver cell
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Tracking cancer-stroma interactions using G-baToN

Cancer cells interact with a variety of stromal cells
at both the primary and metastatic sites
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Tracking cancer-stroma interactions using G-baToN

Cancer cells interact with a variety of stromal cells Co-culturing sGFP-expressing lung adenocarcinoma cells with primary human umbilical vein endothelial cells
at both the primary and metastatic sites (HUVECs) in a 2D format led to robust endothelial cell labeling
Normal Pancreatic Duct Pancreatic Intraepithelial Neoplasia Pancreatic Ductal Adenocarcinoma a
{ESniN) sGFP-Cancer cell Senders

+ Control-Endothelial cell Receivers + aGFP-Endothelial cell Receivers

- ? o Senders Sender
alololonoleloloTol Wied Yoy
Basal \ < ; TOF-B) el 23 ‘.'-.
i - w
PaniN-1 PanIN-3 . 1
Pancreatc  Transformed Pancreatic | 'Mactive Stellate Cell  Activated Stellate Cell . Rece IVe r " 3
Ductal Cell Cancer Cell —_— —— —# e f‘ Blood Vessel % Extracellular Matrix (ECM) y ' Rece'ver
2% ° Growth Factors __ ; ’ y - z
w| @ E] — @ et R 5T e cpokines GFP Tomato GFP Tomato |

Cancer Letters 2017

b *ok
15 ] e
Og G-baToN can detect cancer cell endothelial cell
I-I:":< 10 - (EC) interactions.
ST
S HUVECs expressing aGFP were co-cultured with or
8: S without Tomato pos sGFP-expressing lung cancer
D:(“5 sender cells at a 1:1 ratio for 24 hr.
0 Lapenpa B9 1
oGFP-EC - - + +
sGFP-Senders - + — +

Figure 3



Tracking cancer-stroma interactions using G-baToN

Within 3D microfluidic chips, pre-seeded HUVECs expressing aGFP were robustly labeled
following co-incubation with sGFP-expressing lung adenocarcinoma cells.
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The G-baToN system is able to efficiently record cancer cell-endothelial cell interactions
across multiple culture conditions.
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Tracking cancer-stroma interactions using G-baToN

Importance of interactions with adaptive
immune cells during carcinogenesis
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Tracking cancer-stroma interactions using G-baToN

Importance of interactions with adaptive
immune cells during carcinogenesis
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Assessment of the ability of the G-baToN system to track the interaction of primary human
CD4 and CD8 T cells with lung cancer cells
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Figure 4

I The G-baToN system is capable of recording cancer cell-T cell interactions both in vitro and in vivo




a sGFP-Cancer cell Senders
+ Control-Neuron Receivers

G-baToN can be applied in a wide range of cell types
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sGFP-expressing lung cancer sender cells upon cell-cell

10 7 *k L
" ] . To assess the generalizability of the G-baToN system
{ =
25 81 1} across cell types, they expressed aGFP in a panel of
Q T . .
Z2 4| N cell lines and primary cells.
g 4 .
lobkie Z5 Each receiver cell type was able to uptake GFP from
o~ o2
&
0 s contact.
e, T b ) s
Control-Neurons + - + -
aGFP-Neurons — + - o+ . . .
" - e e . o o Diverse cancer cell lines and primary cell types
> Tomato Map2 |GFP Tomato Map2| expressing sGFP were able to transfer GFP to aGFP-
expressing HEK293 receiver cells.
= sGFP-Astrocyte Senders sGFP-Astrocyte Senders d
+ Control-Neuron Receivers + o GFP-Neuron Receivers ek

~n

GFPr= Neurons
# of cell / field)
M

(
5

Control-Neurons +
aGFP-Neurons —
sGFP-Astrocytes +

Map2 DAPI §

Figure 5

Receiver cell labeling required sGFP-expression on the
sender cell and aGFP expression on the receiver cells.

G-baToN-based labeling extends beyond transformed cell types and can label diverse primary cell types in co-culture




G-baToN can be applied in a wide range of cell types

Can primary cells serve as both sender and receiver cells?

Assessment of GFP transfer between interacting primary cells:
- endothelial cells interacting with smooth muscle cells
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These results document the efficiency of G-baToN-based cell labeling across diverse cell types



Multicolor labeling enables recording of reciprocal and higher-order interactions

Could other surface antigen/antibody pairs lead to protein transfer and labeling?

Orthogonal systems consisting of:

- surface-mCherry/amCherry (LaM4)
- surface-GCN4-GFP/aGCN4 (single-chain variable fragment, scFV)

led to efficient and specific receiver cell labeling



Multicolor labeling enables recording of reciprocal and higher-order interactions
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Reciprocal labeling of both interacting cell types

Co-expression of amCherry and aGFP on receiver cells enabled
dual color labeling of receiver cells that had interacted with
smCherry-expressing, sGFP-expressing, or both sender cell types

They achieved dual-color labeling of receiver cells by leveraging the ability of
aGFP to bind to both sGFP and sBFP

I Derivatives of the G-baToN system allow for additional degrees of resolution of complex cell-cell interactions I




Labeling with HaloTag-conjugated fluorophores enhances sensitivity and signal persistence
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Generation of sender cells expressing the HaloTag protein fused to sGFP

Covalent attachment of a synthetic fluorophore to
sHalo-GFP enabled specific loading onto sender cells

* Compared to GFP, transfer of the chemical fluorophore using sHalo-
GFP-based labeling of receiver cells led to increased signal-to-noise
ratio and higher sensitivity

e Changing from a protein (GFP) to a chemical fluorophore also extended
the half-life of labeling, thus enabling partially tunable persistence of
labeling after touching



The G-baToN system can function as a vehicle for molecular cargo
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G-baToN systems enable contact-dependent transport of different macromolecules between cells




Discussion

Novel cell-cell interaction reporter system

G-baToN system can record diverse cell-cell interactions in a specific and sensitive manner

Ability of diverse primary cell types to serve as both sender and receiver cells (suggesting that the G-baToN system is
generalizable)

Multicolor derivatives of G-baToN enable qualitative and quantitative analyses of higher order
interactions involving more than two cell types

The ability to co-transfer protein, DNA and chemical cargo suggests that this platform could be leveraged to manipulate
target cell function




Discussion

The G-baToN system labels receiver cells through transfer of cell surface GFP which, due to its lability, ensures only
transient labeling

Transient labeling is sufficient to label stable cancer cell-stromal cell interactions and many
other diverse cell-cell interactions when sender cells consistently express GFP

This transient labeling should allow dynamic interactions to be detected, ensuring that the labeled receiver cells either
are in contact with, or have recently interacted with sender cells



Discussion

-> G-baToN system is able to mediate cargo transfer

* Feasibility of transferring small molecules (HaloTag ligand), functional proteins (puromycin resistant protein, and non-protein macromolecules (ssDNA)

 Transferred cargo proteins may be able to modify receiver cell sighaling or promote cell death

* Inthe future, additional design features could allow cancer cell-stromal cell interaction dependent drug delivery or cell-cell interaction facilitated
sgRNA transfer between interacting cells

* Simplicity of its components, generalizability across cell types, excellent foreground to background ratio, and rapid labeling, should enable facile
analysis of the dynamics of cellular interaction

* These types of approaches have the potential to have a broad impact on our ability to understand the outputs of cell-cell interactions in cancer and
various other biological systems



Paper #2

Cell Reports Authors

Damien Amol, Denis Schapiro,

Modeling Cell-Cell Interactions from Spatial Bernd Bodenmiller,
Molecular Data with Spatial Variance Component Julio Saez-Rodriguez, Oliver Stegle
Analysis

* Statistical method for analyzing single-cell expression data in a spatial context
* Sources of gene expression variability by decomposing it into different components
* The components come from different sources

* These sources include aspects of spatial variation, in particular cell-cell interactions
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Main points of the paper

* Capture molecular variations in physiological contexts: multiplexed spatially resolved RNA and protein expression profiling of individual cells
* Need of computational approaches for studying the interplay of the spatial structure of tissues and cell-cell heterogeneity

* Spatial variance component analysis (SVCA), a computational framework for the analysis of spatial molecular data

SVCA

\ Enables guantifying different dimensions of spatial variation
v Quantifies the effect of cell-cell interactions on gene expression

V' In a breast cancer IMC dataset, the model yields interpretable spatial variance signatures, which reveal cell-cell interactions as a major
driver of protein expression heterogeneity

\ Applied to high-dimensional imaging-derived RNA data, SVCA identifies plausible gene families that are linked to cell-cell interactions

V' SVCA is available as a free software tool that can be widely applied to spatial data from different technologies
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New dimensions of gene expression variation also have the potential to deliver biomarkers in health and disease
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Technologies for profiling spatially resolved expression profiles (sources of variation)
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Fluorescence assays to measure single-cell RNA levels in spatial context

Multiplexederror robust-fluorescence in situ hybridization

Use of a combinatorial approach of fluorescence-labeled small
RNA probes to identify and localize single RNA molecules

However, they currently do not offer single-cell resolution
and are therefore not sufficient for studying cell-to-cell variations

Same Organization in CAlls
Observed Even with Only Barcoded Genes
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To perform their function, proximal cells need to interact via:
- direct molecular signals

- adhesion proteins

- physical contacts

Certain cell types such as immune cells may migrate to specific locations in a
tissue to perform their function in tandem with local cells
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To perform their function, proximal cells need to interact via:
- direct molecular signals

- adhesion proteins

- physical contacts

Certain cell types such as immune cells may migrate to specific locations in a
tissue to perform their function in tandem with local cells

\' While intrinsic sources of variation have been extensively studied, cell-cell interactions are less well explored

\ Experimentally, the required spatial omics profiles can already be generated at high throughput

\  Need of computational methods that allow for identifying and quantifying the impact of cell-cell interactions
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="~ | There exist regression-based models to assess interactions on gene expression profiles of genes based on pre-
defined features that capture specific aspects of the cell neighborhood.

These models are conceptually closely related to their approach
However, they rely on the careful choice of relevant features

They tend to require specific discretization steps to define cell neighborhoods



Their approach

» SVCA models spatial sources of variation of individual genes

» SVCA allows for decomposing gene expression variation into intrinsic effects, environmental effects and an explicit cell-cell interaction
component

* In contrast to previous methods, their model directly uses the spatial coordinates and the gene expression profile of each cell as input,
thereby avoiding the need to define discrete cell types and other microenvironmental variables

They applied SVCA to two datasets from different technologies and biological domains:
- IMC proteomics profiles data from human breast cancer tissue

- Spatial single-cell RNA profiles from the mouse hippocampus generated using seqFISH

Across these domains, they find that the cell-cell interaction component in their model explains a major share of
expression variability, thus facilitating the identification of biologically relevant genes and pathways that participate in
cell-cell interactions



SVCA: A Statistical Framework for Decomposing Spatial and Non-spatial Sources of Variation

B

SVCA builds upon the random effect framework to model gene expression

r r variation of individual genes as a function of:

}( "“"’-‘I*R'I ({'J:-Karl_f +Kr r||"+ _]'] g
Cell-cell covariance due to the intrinsic effect U int : additive components of intrinsic cell state effects
Cell-cell covariance due to environmental effects U env: an environmental effect linked to the cell position

U c-c: an effect due to cell-cell interactions

Cell-cell covariance due to cell-cell interactions
Independent observational noise (identity matrix)

Y=Uint+Uenv+Uc-c+e

A Y denotes the vector of the expression levels of a gene of interest across
......................................................................................................... . all cells and e denotes Gaussian measurement noise
The intrinsic cell-state covariance K int is estimated based
_:] ) on the expression profiles of all genes except the focal gene:
! |
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*+—nment

@ . v ‘ The covariance for the environmental context
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Spatial Effects | ... . 'lu"'ufﬁeal-; long range This component captures differences in the (local) environment or technical drift in the
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, measurement process
— Environmental effect

Cell-cell interactions The cell-cell interaction covariance term K c-c quantifies the similarity of the cellular
composition in the neighborhood of cells

Figure 1



Figure 1
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Breakdown for each gene of the fraction of variance explainable by spatial and non-spatial variance components,
yielding a compact representation of major drivers of gene expression variation.

SVCA can be used to assess the statistical significance of individual variance terms, using model comparisons between
the full SVCA model and reduced models in which individual covariance terms are omitted

Finally, SVCA can also be used to predict expression profiles of held-out cells

This covariance term corresponds to a linear regression that models the effect of the cell expression profile on
the expression of the gene of interest
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= SVCA does not require discrete cell-type assignments, but instead is based on continuous
measures of cell-cell similarity that are directly estimated from cell expression profiles

= The model also circumvents the need to define local cell neighborhoods, but instead
weights interactions between pairs of cells as a function of their distance



They demonstrate that SVCA can be used to estimate and test for
spatial drivers of single-cell variability, in particular cell-cell interactions



SVCA Yields More Accurate Cell Interaction Estimates than Alternative Models
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Figure 2

They considered a more complex simulation using empirical parameters derived from 11
real datasets, to compare SVCA to alternative models

They stimulated gene expression profiles based on a linear model that accounts for intrinsic
effects and cell-cell interactions of variable size, as well as confounding effects due to cell
mis-segmentation

(A) Simulation approach: the expression profile of a simulated target gene Y is generated as a
linear combination of the empirically observed cell expression profile of all genes (X) and a
linear combination of the N nn first neighbors expression profiles (X) (here, N nn = 4). The
effect of the first neighbors is weighted by the function of their distance to the focal cell.



Application of SVCA to a Breast Cancer Proteomics Dataset Identifies
Cell-Cell Interactions as a Major Driver of Expression Variation
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Figure 3

What they did:
Application of SVCA to an IMC dataset from human breast cancer

26 protein expression levels were quantified at the single-cell level in 46
breast cancer biopsies

What they found out:

SVCA revealed substantial differences of the overall importance of cell-cell
interaction components across proteins, explaining up to 25% of the total
expression variance on average

Immune cell markers in particular were identified among the set of
proteins with the largest cell-cell interaction effects: CD44, CD20, CD3,
and CD68, for which cell-cell interaction explained more than 10% of the
variance

Hypothesis: this effect could reflect the recruitment of immune cells by
specific cellular environments



Application of SVCA to a Breast Cancer Proteomics Dataset Identifies
Cell-Cell Interactions as a Major Driver of Expression Variation
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Application of SVCA to a Breast Cancer Proteomics Dataset Identifies
Cell-Cell Interactions as a Major Driver of Expression Variation
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Substantial variation of the estimated spatial variance
signatures between images

Motivating investigation of the relationship between
spatial variance components and clinical covariates,
including tumor grade

Sub-structure between images that was significantly
aligned with tumor grade

Cell-cell interaction component and the environmental
component for a subset of proteins (including CD20 and
CD44) as the most informative SVCA features for PC1,
which correlates with tumor grade.



Application of SVCA to an Hippocampus RNA Dataset |dentifies Relevant Gene Families
Involved in Cell-Cell Interactions

Mouse hippocampus dataset profiled using seqFISH
249 RNA expression levels were assayed in 21 distinct brain regions of a single animal
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interaction component

-> Differences in the spatial variance signatures across images, which were
sampled from functionally distinct regions of the hippocampus.

Principal components of the spatial variance signature for the dorsal region clustered
together, irrespective of their CA1/CA3 location

Similarly, images from the dentate gyrus (DG) also clustered together

This is consistent with the observation by Shah et al. (2017) that the ventral and dorsal
regions of the CA1 and CA3 mirror each other with respect to their cellular
compositions and ventral regions are more heterogeneous in their cellular
composition

Spatial variance signatures for intermediate regions, however, did not show much
resemblance



Application of SVCA to an Hippocampus RNA Dataset |dentifies Relevant Gene Families
Involved in Cell-Cell Interactions

Identification of gene families that participate in cell-cell interactions

Which of the selected genes categories are enriched for large cell-cell

C-C interactions %5 interaction components?
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Single-cell expression levels of cell junction genes appeared to be regulated by cell-cell interactions.

The enrichment of glutamate transporters is also consistent with their involvement in the transport and (re)uptake of the neurotransmitter at the neuronal synapses, a critical cell-cell
interaction in the brain.

In addition, Slc5a7 (CHT) was also found to be preferentially expressed in specific interneurons with a link to the spatial organization of the tissue



Application of SVCA to an Hippocampus RNA Dataset |dentifies Relevant Gene Families
Involved in Cell-Cell Interactions

Identification of gene families that participate in cell-cell interactions

Which of the selected genes categories are enriched for large cell-cell
interaction components?

3
C-C interactions 2.5
2

Intrinsic ]'5 -> Cell junction genes and neurotransmitter transporters were the most
0.5 enriched groups
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- Individual cell junction genes, such as GJA1 (connexin), are involved in gap
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Single-cell expression levels of cell junction genes appeared to be regulated by cell-cell interactions.

The enrichment of glutamate transporters is also consistent with their involvement in the transport and (re)uptake of the neurotransmitter at the neuronal synapses, a critical cell-cell
interaction in the brain.

In addition, Slc5a7 (CHT) was also found to be preferentially expressed in specific interneurons with a link to the spatial organization of the tissue

Genes with large cell-cell interaction components, as identified using SVCA, have known implications in cell-cell communication
between neurons or for regulating the spatial architecture of the tissue.




Discussion

SVCA, a regression-based framework for the analysis of spatially resolved molecular expression data

The model computes a spatial variance signature for individual mRNA or protein levels, decomposing their sources of variation into
spatial and non-spatial components

SVCA provides a quantitative assessment of the effect of cell-cell interactions on the expression profile of individual molecules

SVCA tackles the problem of cellular classification and neighborhood definition using a continuous representation of space and cellular
identity

Application of SVCA to multiple datasets generated using alternative technologies, probing either RNA transcripts or proteins,
demonstrating the broad applicability of the approach

Cell-cell interactions can substantially contribute to gene expression variation,which is consistent with previous reports

Studying single-cell expression in the native context is important for understanding the sources of these variations



Discussion

What are the causes of many variations in the SVCA signatures across images?

-> differences in SVCA signatures could result from differences in the spatial structure of tissue, different clinical and biological
contexts, different tissue organizations between samples.

What are the spatial variance signatures of individual genes and pathways?

-> SVCA indentifies genes with known involvements in cellular interactions, even specific to the brain, such as SLCs, to be
predominantly enriched in the corresponding terms of our models.

To confirming the biological relevance of SVCA signatures, these results suggest that spatial variance signatures can be utilized to
study the involvement of individual genes in tissue-level functions.

Spatial distribution of proteins, transcripts, and other molecules is important in determining tissue functioning and its deregulation in
disease

It has a potential value as predictors of clinical outcomes




Thank you for your attention!
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