Virtual Reality to study neural basis of behavior

Technical Journal Club 27.02.2018

Anna Henzi

VR to study neural basis of behavior

Cell 2017

Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex

- Closed-loop manipulations of environment
- Overcome limitations of physical arenas

Nature, 2017

Virtual reality for freely moving animals

John R Stowers^{1,2}, Maximilian Hofbauer¹⁻⁴, Renaud Bastien^{5,6}, Johannes Griessner¹, Peter Higgins¹, Sarfarazhussain Farooqui^{3,4,7}, Ruth M Fischer³, Karin Nowikovsky⁷, Wulf Haubensak¹, Iain D Couzin^{5,6}, Kristin Tessmar-Raible^{3,4}, Andrew D Straw^{1,8}

Head fixation impedes
 normal behaviour, distorts
 vestibular inputs

Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex

Graphical Abstract

Authors

Alexander Attinger, Bo Wang, Georg B. Keller

Correspondence

georg.keller@fmi.ch

In Brief

The coupling of sensory and motor experience during development shapes visual perception by tuning a cortical circuit that compares inhibitory visual input and excitatory motor input and is able to detect mismatches between actual and expected sensory experience.

Background

 Sensorimotor coupling necessary for development of sensory-guided behavior

- Response of visual cortex V1
 - motor-related signals
 - Predictive coding

Background

 Sensorimotor coupling necessary for development of sensory-guided behavior

- Response of visual cortex V1
 - motor-related signals
 - Predictive coding

Methods

Mice dark-reared and trained in VR system

Methods

Mice trained in VR system

Training sessions
Coupled (CT)
Non-coupled (NT)

Imaging
Closed loop session
Open loop session

Basic setup: Hölscher 2005

Methods

- Imaging sessions (closed + open loop)
- Measure neuronal activity in V1 layer 2/3
 - 2 photon-imaging of GCaMP5/6f
 - Only excitatory neurons (total 2'259 neurons)

Results

 Sign. fraction of excitatory neurons responds to mismatch in CT mice (38.3% compared to 20% in NT mice)

Results

 Sign. fraction of excitatory neurons responds to mismatch in CT mice (38.3% compared to 20% in NT mice)

Results

Population response

Α

 Difference between excitatory prediction and inhibitory visual input?

- Inputs balanced when predictions match visual experience
- Mismatch:
 \[
 \] visual inhibition > activation of neuron by excitatory motor-related input
- Correlation of activity with visual flow and running speed

Correlation of activity with visual flow and running speed in open loop sessions:

CT mice

Α

Correlation of activity with visual flow and running speed in open loop sessions:

CT mice

Correlation of activity with visual flow and running speed:

Correlation of activity with visual flow and running speed:

CT mice

Visuomotor coupling establishes a balance between inhibition and excitation

- Which inhibitory neurons?
 - Cre-driver lines for selective expression of GCaMP6f in
 - SST
 - VIP
 - PV

Α

- Which inhibitory neurons?
 - Cre-driver lines for selective expression of GCaMP6f in

- Which inhibitory neurons?
 - Cre-driver lines for selective expression of GCaMP6f in

Α

- Which inhibitory neurons?
 - Cre driver lines for selective expression of GCaMP6f in

- Which inhibitory neurons?
 - Cre driver lines for selective expression of GCaMP6f in

Restoration of normal visuomotor integration

 Exposure to normal light/dark cycle, and open- and closed-loop conditions

Conclusions

Mismatch response = consequence of predictive coding strategy

- V1 layer 2/3 excitatory mismatch and a subset of VIP interneurons receive excitatory, motor-related input
- SST neurons more strongly driven by visual input
- Artificial restriction of visuomotor coupling to only a subset of movements leads to an overrepresentation of the visuomotor processing of these movements.
- Needs to be unlearned for normal visuomotor behavior

Virtual reality for freely moving animals

John R Stowers^{1,2}, Maximilian Hofbauer¹⁻⁴, Renaud Bastien^{5,6}, Johannes Griessner¹, Peter Higgins¹, Sarfarazhussain Farooqui^{3,4,7}, Ruth M Fischer³, Karin Nowikovsky⁷, Wulf Haubensak¹, Iain D Couzin^{5,6}, Kristin Tessmar-Raible^{3,4}, & Andrew D Straw^{1,8}

- VR systems require movement restrictions
- FreemoVR = VR system for freely moving animals
 - Instant, disruption-free environmental reconfigurations and interactions between real organisms and computer-controlled agents
 - Animal tracking + precise spatial calibration of computer displays + computer game technology > draw realistic and perspective-correct images from animals perspective

Virtual reality for freely moving animals

John R Stowers^{1,2}, Maximilian Hofbauer¹⁻⁴, Renaud Bastien^{5,6}, Johannes Griessner¹, Peter Higgins¹, Sarfarazhussain Farooqui^{3,4,7}, Ruth M Fischer³, Karin Nowikovsky⁷, Wulf Haubensak¹, Iain D Couzin^{5,6}, Kristin Tessmar-Raible^{3,4}, & Andrew D Straw^{1,8}

- VR systems require movement restrictions
- FreemoVR = VR system for freely moving animals

Validated for fly, mouse and fish

Validation

Behavioral response to virtual objects

Validation

Behavioral response to virtual objects

Validation

Height aversion (mice)

Head immobilization

Head immobilization

Head immobilization

FreemoVR enables novel experimental designs...

Subtle visuomotor deficit in *mitf-a* mutant zebrafish

FreemoVR enables novel experimental designs...

Subtle visuomotor deficit in mitf-a mutant zebrafish

Subtle visuomotor deficit in *mitf-a* mutant zebrafish

VR system can discover even small deviations from WT behavior in freely moving animals

- Virtual teleportation: decision-making assay for fish
 - Checkerboard or plant world?

- Virtual teleportation: decision-making assay for fish
 - Checkerboard or plant world?

- Virtual teleportation: decision-making assay for fish
 - Checkerboard or plant world?
 - Virtual swarm (space invadors)

- Virtual teleportation: decision-making assay for fish
 - Checkerboard or plant world?
 - Virtual swarm (space invadors)
 - >Scene specific swimming speeds
 - ➤ Preference for portal appearance
 - ➤ Occupancy differences
 - ➤ No learning

Social responsiveness

Virtual swarm: personal vs. social information in movement decisions

Advantages and limitations

- Setting to allow naturalistic behaviors
- Closed-loop
- Study of
 - Visual processing
 - Spatial navigation + cognition (i.e. Acharya 2016, Chen 2013)
 - Spatial learning and memory (water maze)
 - (multimodal) sensory integration
 - (Social) interactions, collective behaviour
- Restraint
- Stimulus repertoire limited
- No stereovision
- Only single animals
- no eye position tracking or angular orientation
- Animals with certain visual requirements
- Time lag what is realistic for animals?
- Limit the movement of the animal in VR

Thank you!

