cerebral organoids: fad or a potentially powerful tool?

technical journal club merve avar 8.12.20

neural organoids: brief history

Kelava and Lancester, Cell Stem Cell, 2016

neural organoids: brief history

Pasca SP, 2018, Nat. Neuroscience

relatively young technology goals of the field:

- recapitulation of 3D properties of complex tissues
- understanding neural development and disease
- utilization of technology in high-throughput platforms for drug and genetic screens

Kelava and Lancester, Cell Stem Cell, 2016

neural organoids: different methods of derivation

methods to derive organoids are highly divergent:

- undirected differentiation / self assembly
- directed differentiation, where fate of a certain brain region is imposed through chemical cues
- assembloids

Pasca SP, 2018, Nat. Neuroscience neural organoids: different methods of derivation

Pasca SP, 2018, Nat.

Neuroscience

→ all these points are possible causes of variation and can lead to reproducibility issues

culturing conditions vary greatly between protocols

topics today

Reliability of human cortical organoid generation

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paṣca², Rebecca M. Marton¹, Aaron Gordon³, Omer Revah¹, Yuki Miura¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca¹, ^{1,7}*

Individual brain organoids reproducibly form cell diversity of the human cerebral cortex

Silvia Velasco^{1,2}, Amanda J. Kedaigle^{1,2,3}, Sean K. Simmons^{2,3}, Allison Nash^{1,2}, Marina Rocha^{1,2}, Giorgia Quadrato^{1,2,4}, Bruna Paulsen^{1,2}, Lan Nguyen³, Xian Adiconis^{2,3}, Aviv Regev^{3,5}, Joshua Z. Levin^{2,3} & Paola Arlotta^{1,2}*

will address the reproducibility of organoids

topics today

Reliability of human cortical organoid generation

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paşca², Rebecca M. Marton ¹, Aaron Gordon³, Omer Revah¹, Yuki Miura ¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca ¹, ^{1,7}*

Individual brain organoids reproducibly form cell diversity of the human cerebral cortex

Silvia Velasco^{1,2}, Amanda J. Kedaigle^{1,2,3}, Sean K. Simmons^{2,3}, Allison Nash^{1,2}, Marina Rocha^{1,2}, Giorgia Quadrato^{1,2,4}, Bruna Paulsen^{1,2}, Lan Nguyen³, Xian Adiconis^{2,3}, Aviv Regev^{3,5}, Joshua Z. Levin^{2,3} & Paola Arlotta^{1,2}*

will address the reproducibility of organoids

A human tissue screen identifies a regulator of ER secretion as a brain size determinant

Silvia Velasco 1,2 , Amanda J. Kedaigle 1,2,3 , Sean K. Simmons 2,3 , Allison Nash 1,2 , Marina Rocha 1,2 , Giorgia Quadrato 1,2,4 , Bruna Paulsen 1,2 , Lan Nguyen 3 , Xian Adiconis 2,3 , Aviv Regev 3,5 , Joshua Z. Levin 2,3 & Paola Arlotta 1,2*

→ further results are mainly from dorsal organoids

Silvia $Velasco^{1,2}$, Amanda J. $Kedaigle^{1,2,3}$, Sean K. Simmons^{2,3}, Allison $Nash^{1,2}$, Marina $Rocha^{1,2}$, Giorgia Quadrato^{1,2,4}, Bruna $Paulsen^{1,2}$, Lan $Nguyen^3$, Xian $Adiconis^{2,3}$, Aviv $Regev^{3,5}$, Joshua Z. $Levin^{2,3}$ & $Paola Arlotta^{1,2*}$

throughout the study 5 different iPS (or ES) cell lines are used

→ however, not for each experiment

different maturation points as well as different batches of organoids are compared to pre-existing datasets of human and mouse origin

→ mainly addresses the representativeness of the organoid model

Silvia Velasco^{1,2}, Amanda J. Kedaigle^{1,2,3}, Sean K. Simmons^{2,3}, Allison Nash^{1,2}, Marina Rocha^{1,2}, Giorgia Quadrato^{1,2,4}, Bruna Paulsen^{1,2}, Lan Nguyen³, Xian Adiconis^{2,3}, Aviv Regev^{3,5}, Joshua Z. Levin^{2,3} & Paola Arlotta^{1,2}*

- dorsal organoids derived from 2 different iPS lines
- o 3 months growth time
- 2 different batches for one of the lines
- scRNA-Seq (10X genomics chromium platform) from 78,379 cells
- → 11 transcriptionally distinct cell types are identified
- → astroglial cells are underrepresented
- → these cell types are present in both of the iPS lines
- → individual organoids recapitulate all 11 cell types
- → confirmed with IHC

Silvia Velasco^{1,2}, Amanda J. Kedaigle^{1,2,3}, Sean K. Simmons^{2,3}, Allison Nash^{1,2}, Marina Rocha^{1,2}, Giorgia Quadrato^{1,2,4}, Bruna Paulsen^{1,2}, Lan Nguyen³, Xian Adiconis^{2,3}, Aviv Regev^{3,5}, Joshua Z. Levin^{2,3} & Paola Arlotta^{1,2}*

- o dorsal organoids derived from 3 different iPS lines
- o 6 months growth time
- 2 different batches for one of the lines
- scRNA-Seq (10X genomics chromium platform) from 87,863 cells

- → in addition to the 11 cell types identified in 3 monthsold cultures, astrocytes and a mix of oRG and astrocytes were identified
- → these cell types are present in all three iPS lines
- → individual organoids recapitulate all 13 cell types
- → confirmed with IHC

Silvia $Velasco^{1,2}$, Amanda J. $Kedaigle^{1,2,3}$, Sean K. Simmons^{2,3}, Allison $Nash^{1,2}$, Marina $Rocha^{1,2}$, Giorgia Quadrato^{1,2,4}, Bruna $Paulsen^{1,2}$, Lan $Nguyen^3$, Xian $Adiconis^{2,3}$, Aviv $Regev^{3,5}$, Joshua Z. $Levin^{2,3}$ & $Paola Arlotta^{1,2*}$

comparison of 3 vs 6 months-old cultures from same iPS line

→ as the organoids mature, astrocytes become prominent

Silvia Velasco^{1,2}, Amanda J. Kedaigle^{1,2,3}, Sean K. Simmons^{2,3}, Allison Nash^{1,2}, Marina Rocha^{1,2}, Giorgia Quadrato^{1,2,4}, Bruna Paulsen^{1,2}, Lan Nguyen³, Xian Adiconis^{2,3}, Aviv Regev^{3,5}, Joshua Z. Levin^{2,3} & Paola Arlotta^{1,2}*

to assess whether organoid cell types and endogenous human brains show similarity the authors compared the scRNA-Seq data to a published human fetal cerebral cortex dataset

- → all organoids independent of cell line or batch distributed similarly and this development approximated that of in vivo human development (shown example is of 3 months)
- → cell types found in the human fetal brain at 6 months correspond to the cell types in 3 months-old organoids

Silvia Velasco 1,2 , Amanda J. Kedaigle 1,2,3 , Sean K. Simmons 2,3 , Allison Nash 1,2 , Marina Rocha 1,2 , Giorgia Quadrato 1,2,4 , Bruna Paulsen 1,2 , Lan Nguyen 3 , Xian Adiconis 2,3 , Aviv Regev 3,5 , Joshua Z. Levin 2,3 & Paola Arlotta 1,2*

do organoids show the same degree of individual brain-to-brain differences seen in human and mouse brains?

- → dorsal directed organoids show a similar variation observed in mouse and human brains
- → MI scores represent the dependence between cluster and individual (lower = similar makeup)

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paşca², Rebecca M. Marton ¹, Aaron Gordon³, Omer Revah¹, Yuki Miura ¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca ¹, ^{1,7}*

- o one differentiation protocol is used
- o organoids can be maintained in culture >25 months
- authors derive 15 iPSC lines from 13 different individuals throughout the study
- to ensure reproducibility the iPSCs are maintained in feeder and xeno-free conditions (hCS-FF)
- comparisons between dorsal (hCS-MEF) and ventral directed organoids (hSS) and feeder-cell layer based organoids (from previously published data)

→ main question addressed in the study is reproducibility of the organoids

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paşca², Rebecca M. Marton ¹, Aaron Gordon³, Omer Revah¹, Yuki Miura ¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca ¹, ^{1,7}*

 to assess the overall success rate of their protocol authors performed 4-11 independent differentiations on 12 iPSC lines (total of 85 experiments)

→ over 90% of cultures were kept successfully in culture >100 days and expressed cortical neural markers and were healthy (lack of caspase 3 activity)

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paşca², Rebecca M. Marton ¹, Aaron Gordon³, Omer Revah¹, Yuki Miura ¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Pasca ¹, ^{1,7}*

- o RNA-Seq performed on organoids from
 - 4 stages of differentiation
 - 6 different iPSC lines (hCS-FF)
 - at least 3 independent experiments
- additional comparison to iPSC cultures maintained on a feeder layer (hCS-MEF)

- → main driver of variance observed is the stage of differentiation (PC1)
- → overall great reproducibility between different individuals and between distinct differentiation experiments

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paşca², Rebecca M. Marton¹, Aaron Gordon³, Omer Revah¹, Yuki Miura¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca¹, ^{1,7}*

- single cell RNA-Seq performed on organoids from
 - day 105 of differentiation
 - from 2 different individuals
 - two differentiations from one of the iPSCs
 - experiment performed on BD Rhapsody system
 - n=24,237 cells

 additional comparison to cultures maintained on a feeder layer (hCS-MEF) as well as organoids from the subpallium (hSS) with ventral identity

- → organoids of ventral and dorsal identity show a robust separation
- → feeder free organoids cluster closely with dorsal forebrain hCS-MEFs

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paşca², Rebecca M. Marton¹, Aaron Gordon³, Omer Revah¹, Yuki Miura¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca¹, ^{1,7}*

- single cell RNA-Seq performed on organoids from
 - day 105 of differentiation
 - from 2 different individuals
 - two differentiations from one of the iPSCs
 - experiment performed on BD Rhapsody system

o additional comparison to cultures maintained on a feeder layer (hCS-MEF) as well as organoids from the subpallium (hSS) with ventral identity

- → 8 cell types are present in the cultures
- → choroid plexus cells are rare in population and was absent in 2 out of the 3 lines in question

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paṣca², Rebecca M. Marton ¹, Aaron Gordon³, Omer Revah¹, Yuki Miura ¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca ¹, ¹*

- SATB2: superficial layer marker
- CTIP2: deep layer
- o GFAP: astrocytes
- o 150 day—old hCS-FF section

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paṣca², Rebecca M. Marton ¹, Aaron Gordon³, Omer Revah¹, Yuki Miura ¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca ¹, ¹*

 temporal trajectories of cortical markers across the development time (25-100 days)

→ hCS-FF and hCS-MEF cultures all show consistency in development

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paşca², Rebecca M. Marton ¹, Aaron Gordon³, Omer Revah¹, Yuki Miura ¹, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paṣca ¹, ^{1,7}*

Individual brain organoids reproducibly form cell diversity of the human cerebral cortex

Silvia Velasco^{1,2}, Amanda J. Kedaigle^{1,2,3}, Sean K. Simmons^{2,3}, Allison Nash^{1,2}, Marina Rocha^{1,2}, Giorgia Quadrato^{1,2,4}, Bruna Paulsen^{1,2}, Lan Nguyen³, Xian Adiconis^{2,3}, Aviv Regev^{3,5}, Joshua Z. Levin^{2,3} & Paola Arlotta^{1,2}*

- o cortical organoids vary vastly in terms of their generation (protocols, equipment for 3D cultures, equipment for maturing etc.)
- o directed differentiation approaches to generate organoids perform relatively better than self-organising whole brain organoids
- reproducibility of organoids does not represent an issue with the presented protocols, however it would potentially help to standardize protocols

- first report of a CRISPR-Cas9 based LOF screen in organoids
- o CRISPR-LICHT: CRISPR-lineage tracing at cellular resolution in heterogeneous tissue
- o limited screen: 172 microcephaly candidate genes

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

- o first report of a CRISPR-Cas9 based LOF screen in organoids
- o CRISPR-LICHT: CRISPR-lineage tracing at cellular resolution in heterogeneous tissue
- o limited screen: 173 microcephaly candidate genes

prerequisites for a successful LOF screen

- o homogeneous clonal growth
- large coverage of individual gRNAs (ie: high transfection/transduction rate)
- o sufficient strength of phenotype in question

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

- first report of a CRISPR-Cas9 based LOF screen in organoids
- o CRISPR-LICHT: CRISPR-lineage tracing at cellular resolution in heterogeneous tissue
- o limited screen: 173 microcephaly candidate genes

prerequisites for a successful LOF screen

- o homogeneous clonal growth
- large coverage of individual gRNAs (ie: high transfection/transduction rate)
- o sufficient strength of phenotype in question

challenges in an organoid model

- heterogenous cell population
- limited starting cell amount leading to low gRNA coverage
- o moderate phenotype in the microcephalic cell-loss phenotype

→ confirmation of dorsal forebrain identity and enrichment of excitatory neurons

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

- o a difference in 2D vs 3D cultures is the uniform vs non-uniform growth of cells
- o in pooled screens variability in cell growth cannot be distinguished from gRNA mediated true KO events.
- o to determine the dynamics of cell growth in organoids—lineage tracing using barcoded DNA

→ difficult to differentiate cell number changes caused by inherent variability from those caused by genetic modulation

→ dual barcoding allows overcoming the problems of variable tissue, unequal lineage growth and low readout sensitivity

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

- o selected 172 candidate genes from developmental brain disorder database(DBDB) and a clinical panel
- o genes are ordered into categories LOE (level of evidence) 1-3 linking them to microcephaly
- o 4 gRNAs per target gene as well as a non-targeting control and a cell proliferation control packaged into a pooled lentiviral library

→ QC score acceptable for the initial screen and the authors were able to identify a known microcephaly gene (CDK5RAP2)

- o for hit selection authors ranked the 172 genes and selected 32 LOE2 or LOE3 genes with at least 2/4 gRNA efficiency
- o furthermore, they tried to validate the 32 genes with individual gRNA validations and ended up with 25 genes
- o most of the 25 hits were involved, not surprisingly, in centriole biogenesis and DNA damage response

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

- o for hit selection authors ranked the 172 genes and selected 32 LOE2 or LOE3 genes with at least 2/4 gRNA efficiency
- o furthermore, they tried to validate the 32 genes with individual gRNA validations and ended up with 25 genes
- o most of the 25 hits were involved, not surprisingly, in centriole biogenesis and DNA damage response

→ focus on IER3IP1, which possesses two interluminally connected ER transmembrane domains, reported to be mutated in patients

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

validation experiments:

3 hESC lines with a LOF mutation in IER3IP1

→ organoid morphology affected by the KO (day 42)

→ neural rosette area was smaller in the KO lines compared to the WT organoids, indication for neural progenitor loss

Christopher Esk^{1*}, Dominik Lindenhofer^{1*}, Simon Haendeler^{1, 2}, Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber^{3,4}, Arndt von Haeseler^{2, 5}, Jürgen A. Knoblich^{1,4}†

validation experiments:

RNA-Seq of KO and Wt organoids at three timepoints (0, 17, 28, 42 days)

→ GO analysis of significantly changed genes at 42 days (however not significant)

→ ER width is altered, which is due potentially to ER stress

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

validation experiments:

- o as IER3IP1 (and its yeast homolog) functions in ER-Golgi transport authors wanted to see if upon the KO any other cargo proteins were affected
- MS of KO vs WT organoids (day 23 and 42):

→ many ECM related proteins are altered in the KO organoids

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

validation experiments:

o IHC of MS identified ECM proteins

→ many ECM related proteins are altered in the KO organoids

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

loss of ECM proteins in mice result in premature differentiation and neural progenitor loss

o stainings for neural progenitor cell markers (SOX2, KI67, PAX6)

→ abnormal localization of the progenitor markers outside of the ventricular-like proliferative neural rosettes suggesting shedding of neural progenitors

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

IER3IP1 loss \rightarrow reduced ECM deposition \rightarrow compromising integrity of neural rosettes \rightarrow premature neurogenesis

o can the phenotype be pharmacologically reversed?

ISRIB, restores UPR mediated translation inhibition

→ improves organoid size as well as neural rosette size

Christopher Esk¹*, Dominik Lindenhofer¹*, Simon Haendeler¹,², Roelof A. Wester¹, Florian Pflug², Benoit Schroeder², Joshua A. Bagley¹, Ulrich Elling¹, Johannes Zuber³,⁴, Arndt von Haeseler²,⁵, Jürgen A. Knoblich¹,⁴†

summary:

- → first paper to report a screen in the organoid model
- → dual barcoding gives control over cell lineages in the organoid model

- → biased set of genes
- → validation experiments can be criticized for lacking other starting hESC or hiPSC lines (or patient cells)
- → would have been interesting to check if ISRIB restores the ECM protein content

Silvia Velasco^{1,2}, Amanda J. Kedaigle^{1,2,3}, Sean K. Simmons^{2,3}, Allison Nash^{1,2}, Marina Rocha^{1,2}, Giorgia Quadrato^{1,2,4}, Bruna Paulsen^{1,2}, Lan Nguyen³, Xian Adiconis^{2,3}, Aviv Regev^{3,5}, Joshua Z. Levin^{2,3} & Paola Arlotta^{1,2}*

do organoids show the same degree of individual brain-to-brain differences seen in human and mouse brains?

- → dorsal directed organoids show a similar variation observed in mouse and human brains
- → MI scores represent the dependence between cluster and individual (lower = similar makeup)

Reaction 1: CB introduction, one cycle

Reaction 2: CB primer neutralization with NOPE oligos, one cycle

Reaction 3: Selective amplification, adaptor intro, multiple cycles

