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Identity of cellular compartments
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Identity of cellular compartments:
• Lipid composition, e.g. phosphoinositides

PIKfyve: PtdIns3P PtdIns(3,5)P2
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Identity of cellular compartments:
• Lipid composition
• Membrane proteins, 

e.g. LAMP1 & 2 in lysosomes

M
en

g,
 2

02
0,

 T
re

nd
s 

in
 C

el
l B

io
lo

gy



Identity of cellular compartments:
• Lipid composition
• Membrane proteins
• Physicochemical properties,

e.g. membrane potential, pH
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Specific manipulation of cellular compartments:
• Lipid composition
• Membrane proteins
• Physicochemical properties
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Light-activated reversible inhibition by assembled 
trap of intracellular membranes (IM-LARIAT)

CRY2 and CIB1 bind upon 
blue light illumination

CRY2

CIB1

Recovery
In dark

Blue light
Illumination 

CRY2
CIB1



Coupling GTPases to CIB1
Illumination = sequestration of membranes
& aggregation of vesicles



Coupling GTPases to CIB1
Illumination = sequestration of membranes
& aggregation of vesicles
- Reduced movement (1.55 um/min vs. 3.66 um/min)

- Increase in size (2.1x)
- Decrease in number (43%)

- Withdrawl from periphery perinuclear
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Specificity recycling endosomes
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• Rab 5: early endosomes
• Rab11 & 25: recycling endosomes
• Rab7 & 9: late endosomal compartment
• Rab3a & 27a: secretory vesicles
• Rab2a: ER-to-Golgi vesicles
• Rab6a: Golgi-to-PM vesicles
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Optogenetic control of functional trafficking processes
Demonstration of functional

alteration upon rab-sequestration

Example1:
Transferrin recycling
=classical function of Rab11

Control: Transferrin 
recycling in COS-7 
cells overexpressing 
CIB1–Rab11 (dark, 
inactive)

light dark

Live cell imaging Fixed at end-point

Rab7 = late endo
Rab11 = recycling endo
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Optogenetic control of functional trafficking processes
Demonstration of functional

alteration upon rab-sequestration

Example1:
Transferrin recycling
=classical function of Rab11

Example2:
Activation of cell surface receptors, 
e.g. EGFR endocytosis involving Rab5

And Rab7-mediated degradation
Rab5 = early endo
Rab7 = late endo
Rab11 = recycling endo
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Optogenetic control of functional trafficking processes
Demonstration of functional

alteration upon rab-sequestration

Example1:

Example2:
Activation of cell surface receptors, 
e.g. EGFR endocytosis involving Rab5

And Rab7-mediated degradation
Rab5 = early endo
Rab7 = late endo
Rab11 = recycling endo



Spatial control of membrane trafficking pathways
Demonstration of spatially defined effect in hippocampal neurons
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Function of the GTPases in growth cones (GC) of neurons
Existing literature suggests that: 

Rab5 functions in the recycling pathway, 
which is necessary for the elongation of neurites 

Rab11 is implicated in regulating the trafficking of integrin to adhesive points in the GCs, 
which is also necessary for neurite growth

Does local aggregation of Rab5- or Rab11- targeted endosomes in the soma or GCs of young neurons (3-6 days
in vitro) trigger a different neurite outgrowth pattern?
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Rab5- or Rab11-targeted aggregation in the soma of hippocampal neurons does not interfere with instant protrusion and growth.



Function of the GTPases in growth cones (GC) of neurons
Existing literature suggests that: 

Rab5 functions in the recycling pathway, 
which is necessary for the elongation of neurites 

Rab11 is implicated in regulating the trafficking of integrin to adhesive points in the GCs, 
which is also necessary for neurite growth

Does local aggregation of Rab5- or Rab11- targeted endosomes in the soma or GCs of young neurons (3-6 days
in vitro) trigger a different neurite outgrowth pattern?

 Rab5



 Rab5-compartments may affect the immediate growth rate through the rapid production of membranes
 Rab11-targeted compartments may affect the stabilization of GCs and support dendritic growth over the long term



Summary
Light-activated reversible inhibition by assembled 
trap of intracellular membranes (IM-LARIAT)

• Sequestration of compartments
– «Knock Down» / «Inhibition» of a whole cellular compartment

• Specific for distinct vesicular compartements of the cell
• Light-activated

• Temporal control (light vs dark)
• Reversible
• Spatial control (e.g. soma vs. neurite)





Background / General Idea

• Most available lipid messengers are not organelle specific
• Endogenous messengers for cellular processes manipulation
• Fluorescence-tag for identification  visualization

• For organelle specificity, many probes with different properties need
to be generated

 «Toolbox» using click-chemistry can provide this easier





Principle

• Click Cage Cumarin was attached to
• Arachidonic acid
• Sphingosine

• Organelle specific modifications
• cationic triphenylphosphonium azide for the mitochondrial probe 
• tertiary amino azide for the lysosomal probe 
• sulfonated azide for the plasma-membrane-specific probe 
• perfluorinated azide for the ER probe 

«Click Cage Cumarin» was 
chemically modified for the
respective target organelle
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• Click Cage Cumarin was attached to
• Arachidonic acid
• Sphingosine

Organelle specific modifications via click chemistry
• cationic triphenylphosphonium azide for the mitochondrial probe
 guidance via membrane potential

• tertiary amino azide for the lysosomal probe 
many amines are “lysosomotropic” due to low pH in lyso
compared to cytoplasm, and depending on pKa of amine

• sulfonated azide for the plasma-membrane-specific probe 
 sulfate is a hydrophilic anion, cannot pass PM easily

• perfluorinated azide for the ER probe 
 “targeting strategy for ER is not as clear”
 empirically? – similar groups mentioned in different papers but 
no explanation
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• Click Cage Cumarin was attached to
• Arachidonic acid
• Sphingosine

Organelle specific modifications via click chemistry
• cationic triphenylphosphonium azide for the mitochondrial probe
 guidance via membrane potential

• tertiary amino azide for the lysosomal probe 
many amines are “lysosomotropic” due to low pH in lyso
compared to cytoplasm, and depending on pKa of amine

• sulfonated azide for the plasma-membrane-specific probe 
 sulfate is a hydrophilic anion, cannot pass PM easily

• perfluorinated azide for the ER probe 
 hydrophobic and amphipathic properties confer a preference 
for the cholesterol-poor ER membranes



Depending on molecule chemistry, the photoactivatable lipid is
integrated into the corresponding organelle

Uncaging works the same for all probes, via 405 nm laser illumination

 Uncaged messenger molecule (arachidonic acid or sphingosine) 
can exert its function specifically in an organelle-specific membrane



Validation of organelle-specific localization
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Validation of organelle-specific localization



Uncaging of arachidonic acid and shingosine
= messenger functionality?
• Measuring of Ca2+ currents:

• HeLa cells were loaded with the calcium indicator 
Fluo-4-AM and the respective caged compounds

• Uncaging with 385 nm LED

Sphingosine-uncaging at PM did not elict Ca2+ 
transient (but at Mito, Lyso & ER it did)
Arachidonic acid-uncaging at Lyso elicted much less

current than at PM and mito

in line with the localization of the main known 
intracellular targets of 
sphingosine: TPC1, in endosomes and lysosomes, and
arachidonic acid: GPR40, at the plasma membrane

Reason for transients after mito-targeted uncaging is
unclear: either mito storage release or rapid transport
of the messengers to respective sites of action

uncaging of sphingosine from mito-targeted probe
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Summary 
• Inducible photorelease of lipid messengers
• Temporal control: induction but not termination
• Spatial control: single cell / wide field illumination
• Subcellular spatial control: Organelle-targeting
• Potential for relatively simple generation of more

probes targeting other organelles

Drawback for our interest: probes are localizing in 
organelles with the organelle-specific properties

- Lysosome-targeted probe may go to lyso due to pH, 
but if pH is altered (as in vacuolar blowing up) it might
not stay there

- Only typical / intact organelles may be targeted, we
cannot find out the origin of the vacuolar membrane
with this
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