Fiber optics emerging in circuit neuroscience From single fibers to multi-fiber bundel arrays Anna Maria Reuss Technical Journal Club 30/04/2019 # Fiber optics in a nut-shell What is fiber optics? How does a photometry setup look like? What is it used for in neuroscience? Pros & cons of the technique # What is fiber optics? http://www.fugal.com/fiber-optics.html © 2006 Encyclopædia Britannica, Inc. # How does a photometry setup look like? ### What can it be used for in neuroscience? #### LETTER doi:10.1038/nature17400 # Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making Kelly A. Zalocusky^{1,2,3}, Charu Ramakrishnan^{1,3}, Talia N. Lerner^{1,3}, Thomas J. Davidson^{1,3}, Brian Knutson⁴ & Karl Deisseroth^{1,3,5} **BRIEF COMMUNICATIONS** #### Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain Christina K Kim^{1,8}, Samuel J Yang^{2,8}, Nandini Pichamoorthy³, Noah P Young³, Isaac Kauvar², Joshua H Jennings³, Talia N Lerner³, Andre Berndt³, Soo Yeun Lee³, Charu Ramakrishnan³, Thomas J Davidson³, Masatoshi Inoue^{4,5}, Haruhiko Bito^{4,5} & Karl Deisseroth^{3,6,7} # High-density multi-fiber photometry for studying large-scale brain circuit dynamics Yaroslav Sych^{1,*}, Maria Chernysheva^{1,2}, Lazar T. Sumanovski¹, and Fritjof Helmchen^{1,2}* ¹Brain Research Institute, University of Zurich, Zurich, Switzerland ² Neuroscience Center Zurich, Zurich, Switzerland ^{*}Correspondence should be addressed to Yaroslav Sych (sych@hifo.uzh.ch) and Fritjof Helmchen (helmchen@hifo.uzh.ch) # LETTER # Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making Kelly A. Zalocusky^{1,2,3}, Charu Ramakrishnan^{1,3}, Talia N. Lerner^{1,3}, Thomas J. Davidson^{1,3}, Brian Knutson⁴ & Karl Deisseroth^{1,3,5} Zalocusky et al., 2016; Nature # Using optogenetics to provide phasic activity in D2-expressing NAc cells during the decision period ## Conclusions - Technique allows to identify relevant temporally specific signals from a genetically and anatomically defined population of neurons - D2 neurons in the NAc signal unfavourable outcomes from the recent past at a time appropriate for influencing subsequent decisions - Risk-preferring rats can be converted to risk-averse rats with precisely timed phasic stimulation of NAc D2R cells - Individual differences in risk-preference as well as real-time risky decision-making can be largely explained by the encoding in D2R-expressing NAc cells of prior unfavourable outcomes during decision-making #### **BRIEF COMMUNICATIONS** #### Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain Christina K Kim^{1,8}, Samuel J Yang^{2,8}, Nandini Pichamoorthy³, Noah P Young³, Isaac Kauvar², Joshua H Jennings³, Talia N Lerner³, Andre Berndt³, Soo Yeun Lee³, Charu Ramakrishnan³, Thomas J Davidson³, Masatoshi Inoue^{4,5}, Haruhiko Bito^{4,5} & Karl Deisseroth^{3,6,7} Kim et al., 2016; Nature Methods ## Conclusions - Multiple-channel recordings from different brain regions and different cell populations - Simultaneous recordings from cell bodies (VTA) and axonal projections - Dual-color photometry through one fiber - Combination of photometry and optogenetics through one fiber - Problems: - Mostly only one mouse and very few trials per experiment - Δ F/F scales different for comparisons - Equal light distribution into the different fibers? # High-density multi-fiber photometry for studying large-scale brain circuit dynamics Yaroslav Sych^{1,*}, Maria Chernysheva^{1,2}, Lazar T. Sumanovski¹, and Fritjof Helmchen^{1,2}* Sych et al., 2019; Nature Methods accepted ¹Brain Research Institute, University of Zurich, Zurich, Switzerland ² Neuroscience Center Zurich, Zurich, Switzerland ^{*}Correspondence should be addressed to Yaroslav Sych (sych@hifo.uzh.ch) and Fritjof Helmchen (helmchen@hifo.uzh.ch) #### High density fiber bundels recordings can be performed in freely moving animals # High density fiber bundels allows simultaneous multi-region calcium recordings during optogenetics perturbation of single regions # Conclusions - Up to 48 channels recordings over many brain regions - Creation of functional networks - In freely-moving animals - Optogenetic perturbation and simultaneous recordings of whole networks ## Pros & Cons #### Pro - Simplicity - Minimum head weight - Negligible heat generation - Cost-efficiency - Potential fast acquisition rate - Customizable fibers - Reduced invasiveness - Easy combination with optogenetics - Long-term experiments #### Contra - (Still) invasive - Limited spatial information - Connection to fiber-bundle necessary (alternative: wire-less LED modules) # Thank you for your attention!