Harnessing ADARs for therapeutic RNA editing

Journal Club 26/02/2019

Juliane Bremer

ADARs

ADAR = Adenosine deaminase acting on RNA

Discovered in 1991

Adenosine-to-inosine (A-to-I) editing

Highly conserved in vertebrates

In mammals 4 different ADARs (3 different genes)

Ь	Z-DNA binding domains	dsRNA binding domains	Deaminase domain	Expression	Function
Mammals				Libiquitous	
ADAR1 p150 [Ubiquitous Interferon-induced	Non-coding
ADAR1 p110				Ubiquitous	Non-coding
ADAR2			+	A few select tissues Mainly in neurons	Recoding
ADAR3				Mostly neural tissues	Possibly editing inhibition Catalytically inactive

ADARs

Targets dsRNA, incomplete understanding of target recognition A-to-I editing sites detected as A -> G mismatches in RNAseq data

Recoding and non-recoding RNA editing by ADARs

Recoding is enriched in neural tissues, e.g. in ion channels and neuroreceptors (5-HT_{2c})

Physiological function of ADARs

Of >1,000 recoding sites in humans, only a few dozen are conserved across mammals

Function not completely understood

ADAR2 knockout mice: progressive seizure, die within 3 weeks of birth

- rescued by genome alteration in glutamate receptor GRIA2 -> Q/R alteration
- GRIA2 only essential RNA editing target for ADAR2

Majority of RNA editing occurs in non-coding parts of the transcriptome

Main function of ADAR1 is most likely to prevent autoimmunity: ADAR1-mediated editing to prevent activation of the cytosolic innate immune system MDA5 knockout rescues embryonic lethal phenotype of ADAR1 knockout mice

«self»dsRNA (resemble viral dsRNA)
Activation of MDA5 (melanoma differentiation-associated protein 5)
-> IFN response which damages host cell

ADAR mediated RNA editing in human diseases

Cancer

- negative correlation between A-to-I editing level and patient survival
- e.g. AZIN1 (antizyme) recoding in hepatocellular carcinoma
- -> edited AZIN1 degrades cyclin D1 and ornithine decarboxylase less well
- -> increased cell proliferation

Autoimmunity

- ADAR1 mutations cause Aicardi-Goutieres syndrome (autoimmune disorder)

Neurological disorders

- altered editing in ALS, Alzheimer, fragile X, epilepsy, bipolar disorder, schizophrenia, autism

Utilizing ADAR for RNA probing and engineering

Harnessing ADARs for therapeutic RNA editing

Published online 7 October 2016

Nucleic Acids Research, 2017, Vol. 45, No. 5 2797–2808 doi: 10.1093/nar/gkw911

Harnessing human ADAR2 for RNA repair – Recoding a PINK1 mutation rescues mitophagy

Jacqueline Wettengel^{1,†}, Philipp Reautschnig^{1,†}, Sven Geisler^{2,3}, Philipp J. Kahle^{2,3} and Thorsten Stafforst^{1,*}

¹Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany, ²Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany and ³German Center for Neurodegenerative Diseases, Otfried-Müller-Strasse 23, 72076 Tübingen, Germany

Received June 23, 2016; Revised September 27, 2016; Accepted September 30, 2016

LETTERS

https://doi.org/10.1038/s41587-019-0013-

Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides

Tobias Merkle¹, Sarah Merz¹, Philipp Reautschnig¹, Andreas Blaha¹, Qin Li², Paul Vogel¹, Jacqueline Wettengel¹, Jin Billy Li² and Thorsten Stafforst¹

NATURE BIOTECHNOLOGY | VOL 37 | FEBRUARY 2019 | 133-138 | www.nature.com/haturebiolechnology

133

Harnessing ADARs for therapeutic RNA editing

Published online 7 October 2016

Nucleic Acids Research, 2017, Vol. 45, No. 5 2797–2808 doi: 10.1093/nar/gkw911

Harnessing human ADAR2 for RNA repair – Recoding a PINK1 mutation rescues mitophagy

Jacqueline Wettengel^{1,†}, Philipp Reautschnig^{1,†}, Sven Geisler^{2,3}, Philipp J. Kahle^{2,3} and Thorsten Stafforst^{1,*}

¹Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany, ²Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany and ³German Center for Neurodegenerative Diseases, Otfried-Müller-Strasse 23, 72076 Tübingen, Germany

Received June 23, 2016; Revised September 27, 2016; Accepted September 30, 2016

Rationale: Advantage of RNA editing: transient and reversible

Aim: site-directed RNA editing at specific sites on user-defined targets

By harnessing endogenous ADARs no need to overexpress a deaminase

To repair a parkinson's disease associated PINK1 mutation

Method: design of guideRNA to harness human ADAR2, composed of

- stem loop structure recruiting ADAR2 via dsRNA binding domains of GluR2
- RNA binding site

Results:

- 1. Test efficiency in PCR tube with gRNA targeting CFP (T66 stop) and recombinant human ADAR2
 - -> highly efficient editing, but massive off-target editing
 - -> off-target editing was reduced by optimizing buffer condition (0.5mM spermidine)

Results:

- 2. Test in cell culture (293T cells)
 - cotransfection 3 plasmids encoding gRNA, ADAR2, substrate (eGFP W58X)
 - -> single + specific A-to-G conversion at target codon in 25% (24h); 40% (48h)

Results:

3. Optimizing guideRNA

- 3' hairpin facilitated cloning

Optimal mRNA binding template length:

18-20nt: editing ~40%

25/29nt: editing yield dropped, more off-target editing

- Optimal distance between 5' of guideRNA

and editing site: 6-7nt

editing yield: 50% (48-72h)

-29 nt mRNA binding site

Results:

- 4. ADAR2 expression from single genomic copy in 293T cells
 - under CMV tet-on promoter
 - sufficed for 45-65% editing
 - no off-target editing
- 5. Editing of 13 different site in 6 different endogenous transcripts (UAG in 3' UTR)- editing yields from 10-35%

B editing of endogenous transcripts						
gene	293T cell + ADAR2 + guideRNA	293T-ADAR2 cell + doxycyclin + guideRNA	negative control (no guideRNA)			
β-actin position #1	27%, 24%	17%, 14%	0%, 0%	β-actin, pos. #1		\wedge
position #2	0%, 0%	0%, 0%	0%, 0%	\wedge \wedge \wedge	Λ Λ Λ	Λ Λ
position #3	24%, 23 %	14%	0%, 0%	/////	/////	/ / / / / /
GAPDH				/ \/ \/ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	/ \/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
position #1	21%, 17%	10%, 10%	0%, 0%	VVXVV	1000	VVVV
position #2	21%, 19%	12%, 10%	0%, 0%	T T GIA G T	T T GIA G T	T T GIA G T
GPI				293T cell	293-ADAR2 cell	negative control
position #1	15%, 16%	12%, 11%	0%, 0%			
GUSB						
position #1	11%, 9%	10%, 9%	0%, 0%	VCP, pos. #1		
position #2	26%, 19%	20%, 16%	0%, 0%	\	Λ	^
VCP				\	^	<u> </u>
position #1	23%	25%, 21%	0%	$\wedge \wedge \wedge \wedge \wedge$	$\wedge \wedge \wedge \wedge \wedge$	$\Lambda \wedge \Lambda \wedge \Lambda$
position #2	16%	15%	0%			
position #3	12%, 11%	13%	0%			/ V V V V \
RAB7A				G T GIA G G	G T G/A G G	G T G/A G G
position #1	32%, 30%	38%	0%, 0%	293T cell	293-ADAR2 cell	negative control
position #2	27%, 28%	33%	0%, 0%	255, 6611	ESS ADMIZ CEII	

Results:

6. RNA editing to repair PINK1 W437X

Cotransfection of PINK1 W437X, Parkin-eGFP, editiong vector (gRNA, ADAR2)

Readout: Parkin clustering after CCCP treatment (work only with repaired PINK1)

CCCP (uncoupler) - exposed mitochondria accumulate PINK1 PINK1 recruits parkin, resulting in ubiquitination of mitochondrial proteins bound by the autophagic proteins p62/SQSTM1 and LC3 resulting in degradation of mitochondria by mitophagy

Results: 6. RNA editing to repair PINK1 W437X (Readout: Parkin clustering after CCCP treatment)

Results: 6. RNA editing to repair PINK1 W437stop

(Readout: Parkin clustering after CCCP treatment/ mitophagy)

Conclusions:

- First strategy to harness wildtype ADAR2 to stimulate site-selective RNA editing at arbitrary mRNAs
- other RNA-processing enzymes (RNaseH, RNA-induced silencing complex) have been shown to be readdressable toward new targets
- RNAi and RNaseH are limited to up/down-regulation of target transcripts,
 RNA editing allows recoding
- remains unclear if they are able to recruit endogenously expressed ADAR2 for site-directed RNA editing

Harnessing ADARs for therapeutic RNA editing

Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides

Tobias Merkle¹, Sarah Merz¹, Philipp Reautschnig¹, Andreas Blaha 💿¹, Qin Li², Paul Vogel 💿¹, Jacqueline Wettengel¹, Jin Billy Li 💿² and Thorsten Stafforst 🔞 1*

NATURE BIOTECHNOLOGY | VOL 37 | FEBRUARY 2019 | 133-138 | www.nature.com/haturebiolechnology

133

Aim: Chemically optimizing antisense oligonucleotides that recruit endogenous human ADARs to edit endogenous transcripts

<u>RESTORE</u> = recruting endogenous ADAR to specific transcripts for oligonucleotidemediated RNA editing

- Without off-target editing
- Without perturbing natural editing homeostasis
- In human cell lines and human primary cells
- To repair PiZZ mutation which causes alpha1-antitrypsin deficiency
- To edit phosphotyrosine 701 in STAT1

Method: only apply oligonucleotide (guideRNA) without protein expression

Result 1: Optimization of the ADAR-recruitment domains by chemical modifications

Result 2: AS Oligonucleotide v9.4 -> best editing in HeLa, even more if IFN α was added - Editing of UAG triplet in the 3' UTR

Result 3: Editing depends on ADAR1

- Both isoforms, p110 and p150 contribute to editing
- The weaker expressed p150 isoform contributes more

Result 4: Dose and time-dependency of editing

- Sigmoidal dose dependency for ASO v9.5
- Time profile with maximum editing at 12-48 h

Result 5: Good editing yield in 10 immortilized human cell lines and 7 primary cells

Result 6: Editing the ORF was limited by translation

- required further ASO modifications (longer specificity domain = 40nt, LNA)

- good editing yields in HeLa cell line and human primary cells, little off-target editing

Result 7: Therapeutic potential of RESTORE

 Targeting functionally important phophotyrosine 701 in STAT1

- Editing of PiZZ mutation (E342K) in SERPINA1 (serpin family A member 1) most common cause of α 1-antitrypsin (A1AT) deficiency

Conclusions

- most previous systems require codelivery of an artificial deaminase, with massive off-target editing
- RESTORE simplifies delivery (ASO only)
- RESTORE allows editing with minimal off-target effects without perturbing the natural editing homeostasis
- Codon scope is limited by the codon preference of natural ADARs
- future modifications of ASOs may improve pharmacological properties