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https://fineartamerica.com/featured/nonlinear-regina-valluzzi.html


The scientific method

System

I
I il <+— Observe and describe
| |
| |
| |
| |
| |
| | Discern pattern, find rules
I I > (deduction)
I-----------------I
Using the language of
mathematics
F=mg
/ \ \
Weight is another word
O Y Predlctlon ’ for the force of gravity
Y ] .
Compare predicted with Fy=mg=W

observed reality
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System can be: 
Brain
Institute of Neuropathology
USZ
Zurich
Solar system
Universe


Nonlinearity: Disclaimer

 Nomenclature mostly from classical and
guantum mechanics.

 Mathematical and intuitive approach
possible.

 In biology, pioneered and mostly used by
(however still few) ecologists.

« Usually ignored in molecular biology.
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A manifold is a topological space that is modelled on Euclidean space.


Goals of this JC

« Show you how insights gained in one field
of science may, If understood and taken
advantage of, fertilize other fields.

* Discuss how scientific questions may
Impact, and even alter, everyday
epistemology.

« Show conceptual relevance without
necessarily understanding the full
mathematical scope.



Phase space and dimensionality

System

- |nfinite number of variables
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Phase space: Sum of all possible states of a dynamic system.
Dynamic evolution of a possible state: Trajectory/orbit. 


Phase space and dimensionality

Phase space

-------l
<

Amount of variables required to represent system: Dimensionality
The more dimensions, the higher the degree of freedom



Relationship of phenomena

 The world Is not static and changes over
time: Dynamics -> usually nonlinear.

 If sensitive to initial conditions (e.g.
chaos theory) = usually nonlinear.

« Something like f(x) = mx + k = certainly
linear.



Linear systems

Change in variable at initial time
-> change in same or different
variable at later time that is
linearly proportional to change
at initial time.

Linear systems satisfy the
property of superposition: The
combination of two solutions for

a linear system is also a solution:

f(x +y) =1(x) +1(y).

System can be simplified, sum
of simplified solutions
(addressing the full complexity of
the system) are still valid.

Rather easily solvable.

Nonlinear
systems

Change in variable at initial time
—> change in same or different
variable at later time is not
proportional to change at initial
time.

Often, they show exponential
sensitivity to initial conditions.

Individual solutions cannot be
superimposed - Cope with
entire complexity of problem.

Solutions require high
computational power.

These systems are ubiquitous
In nature and concern all fields
of science!



Linear vs. nonlinear problems
Separability!

A

2 ®

® 0¥ .
@

&



Vorführender
Präsentationsnotizen
http://nbviewer.jupyter.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/kernel_pca.ipynb#Principal-Component-Analysis


Linearity Is an exception

 Example linear system: Dampened oscillator:

L
e de T T

mx+bx+kx=0

with x; = X
and x, = x
X1 =X,
b k b k
Xp=X=——X— —x=——x,— —X;
m m m m

e Since x; on the right side appear first power, the system is called
linear. Otherwise, system would be nonlinear.
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𝑚  𝑑 2 𝑥 𝑑 𝑡 2  +𝑏 𝑑𝑥 𝑑𝑡 +𝑘𝑥=0

b: friction constant
dx/dt: velocity
Ffriction = b * v
m = mass
kF = spring constants



Linearity Is an exception

 Example nonlinear systems:
— Gene expression
— Neuronal network formation
— Morphogenesis
— Weather
— Fish population/overfishing
— Spread of infectious disease with TIME
— Pulsating stars (non-chaotic)
— Other stars (chaotic)
— Economics (stock market, e.g.)

« Common sense assumptions:
— System is static
— We are in equilibrium



Why should we consider nonlinear
systems?
Because we may not be at equilibrium

when we measure.

Because TIME may heavily influence the
outcome of our studied system.

Because our data might heavily rely on
Initial states and display mirage
correlations.

(Because some of us would like to make a
lot of money on the stock market...)



Detecting Causality In
Complex Ecosystems

George Sugihara,* Robert May,” Hao Ye,! Chih-hao Hsieh,>* Ethan Deyle,*
Michael Fogarty,* Stephan Munch’

Identifying causal networks is important for effective policy and management recommendations on
climate, epidemiology, financial regulation, and much else. We introduce a method, based on nonlinear
state space reconstruction, that can distinquish causality from correlation. It extends to nonseparable
weakly connected dynamic systems (cases not covered by the current Granger causality paradigm).

The approach is illustrated both by simple models (where, in contrast to the real world, we know the
underlying equations/relations and so can check the validity of our method) and by application to real
ecological systems, including the controversial sardine-anchovy-temperature problem.

26 OCTOBER 2012 VOL 338 SCIENCE www.sciencemag.org



Implications: Correlation and
causation

Shark attacks

Ice cream sales



Implications: Correlation and
causation

* Bishop Berkeley (1710): «Correlation does
not necessarily imply causation.»

Correlation

Causation



Detecting causality in complex
systems

* Imagine you have reason to believe that the laws
«governing» your system have to be
mathematically described with a nonlinear
difference equation.

<+  (hserve and describe

Discern pattern, find rules
(deduction)

Multiple solutions, complex PR _

behaviour, chaos, bifurcations.




The Coupled Logistic Map: A Simple Model for the Effects of
Spatial Heterogeneity on Population Dynamics

ALun L. LLoyp

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.

(Received on 3 August 1993, Accepted in revised form on 19 October 1994)

X(e+1)=X(t)[r, —rX(r) — B, Y ()]

Y(t+1) = Y(O)[ry — 1Y () — B, X (1)]

o Simple model of two elusively coupled
logistic maps —> two species logistic
model.



Causation without correlation?

X(t+1) = X(t) [3.8 - 3.8 X(t) -0.02 Y(1)]
Y(t+1) = Y(t) [3.5 - 3.5 Y(t) - 0.1 X(¢)]

1
A
0.8
0.6
1 I
0.4
positive anti none

DE | | | | | | | !.HLT | | | | | | Ilﬁr | | | | | | |

Time
Fig. 1. Mirage comrelations. (A to €) Three samples from a single run of a coupled two-species nonlinear logistic
difference system with chaotic dynamics. Variables X (blue) and Y (red) appear correlated in the first time
segment (A), anticorrelated in the second time segment (B), and lose all coherence in the third time segment (C)
with altermating interspersed periods of positive, negative, and zero correlation. Although the system is
deterministic and dynamically coupled, there is no long-term correlation (n = 1000, p = 0.0054, P = 0.864).
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Altough system is determined and dynamically coupled, there is no long-term correlation. 


0.8

0.6

0.4r-

0.2

Correlation and causation

e Conclusion: Variables are not causally related since they
are uncorrelated?
* But they are, mathematically, causally related.



Predictive causality

Importance to define causal relationships
also in nonlinear, I1.e. predominating,
systems In nature.

Apply principal of Granger causality?
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Lecture notes from lecture hold by George Sugihara.


Granger causality (economics)

If

o {X|D)} < o*{(X|U - 1)}

IS true, then Y «Granger causes» X.

Problematic if Y contains information on X, i.e. is not fully uncoupled -
This is exactly what happens in dynamic (coupled) systems where
iInformation about Y is contained in all other variables, whereby it
cannot be subtracted from the universe of all possible variables.

Granger theorem only applies if world is fully stochastic.
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Lecture notes from lecture hold by George Sugihara.

Predict X from the universe of all variables U. 
Sigma square = variance

If we remove variable Y from the universe of all possible variables and the variance increases, we know that Y Granger causes X. 


Convergent cross mapping

e |If X causes Y, then Y contains information
about X that can be used to predict X.

e States of X can be reconstituted from
history of Y.

e Causation can be tested by mesauring
extent to which historical record of Y
values can reliably estimate states of X -
correlation coefficient p.


Vorführender
Präsentationsnotizen
Lecture notes from lecture hold by George Sugihara.


Finding correlations

State Space Reconstruction:
Time Series and Dynamic Systems

A supplemental simulation and animation for
“Detecting Causality in Complex Ecosystems”

George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh,
Ethan Deyle, Mike Fogarty, and Stephan Munch

animation by: Peter Sugihara, Hao Ye, and George Sugihara ® August 2012




Convergent cross mapping

Fig. 2. Convergent cross mapping (CCM) tests for comespondence between shadow manifolds. This example
based on the @nonial Lorenz system (a coupled system in X, ¥, and Z; eq. 57 without V) shows the attractor
manifold for the original system (M) and two shadow manifolds, My and My, constructed using lagged-coordinate
embeddings of X and ¥, respectively (lag = t). Because X and Y are dynamically coupled, points that are nearby on
My (e.g., within the red ellipse) will comespond temporally to points that are nearby on My (e.qg., within the green
circle). That is, the points inside the red ellipse and green circle will have corresponding time indices (values for t).
This enables us to estimate states across manifolds using Y to estimate the state of X and vice versa using nearest
neighbors (3). With longer time series, the shadow manifolds become denser and the neighborhoods (ellipses of
nearest neighbors) shrink, allowing more precise cross-map estimates (see movies 51 to 53).

Based on Lorenz
attractor for
coupled
nonlinear system

X =a(Y — X)
Y=X(b-2)-Y
Z=XY —cZ
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In this figure, what is depicted is the attractor manifold based on the Lorenz system (system that involves three coupled nonlinear differential equations). The attractor manifold for the original system (M) is shown, and its two shadow manifolds Mx and My that are contructed by means of Takens’ theorem.

Nearby points on Mx and My are connected via time indices as for both variables, there are time series.  Thereby, we can estimate states accross manifolds using Y to estimate the state of X and vice versa. 


Takens’ Theorem

State Space Reconstruction:
Takens’ Theorem and Shadow Manifolds

A supplemental simulation and animation for
“Detecting Causality in Complex Ecosystems”

George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh,
Ethan Deyle, Mike Fogarty, and Stephan Munch

animation by: Peter Sugihara, Hao Ye, and George Sugihara @ August 2012




Convergent Cross Mapping

State Space Reconstruction:
Convergent Cross Mapping

A supplemental simulation and animation for
“Detecting Causality in Complex Ecosystems”™

George Sugihara, Hobert May, Hao Ye, Chih-hao Hsieh,
Ethan Deyle, Mike Fogarty, and Stephan Munch

animation by: Peter Sugihara, Hao Ye, and George Sugihara ®© August 2012




Detecting causation with CCM

A E
08
08
S
0.4
0.2 — XM,
—Y({)IM,
OO 1000 2000 3000
L
C, D |
<)
g 0.8 % 08
[11]
E 0§ £ s
g g
Ex 0.4 E“'D_d
E 02 e 02 Fig. 3. Detecting causation with CCM. With convergence, the skill of cross-map esti-
. . mates, indicated by the correlation coefficient (p), increases with time-series (library)
0 02 04 06 08 1 0 02 04 06 08 1 length L. (A) CCM for Eq. 1, Fig. 1, where the effect of X on Y is stronger than in the

Y(#) (observed) X(t) (observed) reverse: B, > B,,. Consequently, cross mapping X using My converges faster than
cross mapping Y using My. (B) Summary of this effect for Eq. 1, L = 400. (C to E) When Y
(red) has no effect on X (blue) (i.e., B, = 0), (C) shows that cross mapping of Y using My fails; however, the cross map of X succeeds (D) because the time series for
¥ contains information about the dynamics of X. (E) demonstrates nonconvergence of Y(t) as a function of forcing strength when p, »= 0. Convergence only
occurs as a special case if strong forcing causes the system to collapse dimensionality (dark red plateau at high ), thus removing the dynamics of Y.
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For longer time series L, the correlation coefficient increases.
Beta x,y = 0  Y no effect on X.
Beta y,x = 0  X no effect on Y.
C: When beta x,y = 0, the the Y manifold cannot be reconstituted, as expected. 
D: However, X can still be recovered from Y.
E: If Y has no effect on X, X needs to have a huge effect on Y in order to still measure convergence. System has to be pushed so that crossmapping is still possible but Y is not dynamic any longer. 


Causal networks

.A. B 1 i ] . |' _

N i = = cross—correlation ||
C?S,e L . = Xxmap Y
Bidirectional coupling gt Y xmap X

06
Case ii: o  f |
Unidirectional coupling 0.4 P e T S e s =T ]
.D_E L “"_,..n-— R — e ———_|
Example 1:
External forcing of 0320 40 60 80 100 120 140 160
non-coupled variables L
Causal links (cross map p):
-~ 1=»2 (1.00) 1=+4 (0.50) 1=>5 (0.21)
Example 2: ! 2=+1 (1.00) 2=+ 4 (0.60) 2=+5 (0.13)
Complex model l" __ {1 =3 {1 'DO]I 3=» 4 (0.51) 3 =5 (0.25)
N : Y 3= 1 (1.00)
3=+2 (1.00) *All other links not significant
2 =+ 3 (1.00)

Fig. 4. Model causal networks. (A) Schematics of causal networks: two base cases and two model
examples showing external forcing of noncoupled variables. (B) Cross-map results for example 1: external
forcing of noncoupled variables. Cross-correlation erroneously suggests that X and Y are interacting,
whereas cross mapping correctly shows that there is no interaction. (C) Cross-map results for the complex
five-species model example. All significant (P < 0.05) mappings are given and indicate that species 1, 2,
and 3 (the subsystem in the circle) all interact mutually (case i), but interact only asymmetrically as
external forcing variables with respect to 4 and 5 (case ii), which do not interact directly themselves.
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Model examples:

Models can be biredctionally coupled,
Unidirectionally coupled,
Or an external force can act on them.  See B: In case an external force acts, the crossmapping indicates a very low correlation whereas standard cross correlation would indicate quite a bit of correlation.
A complex model involves many different interactions acting in parallel. Here, they used a five species model and found that species 1, 2, and 3 bidirectionally interact with each other, which is shown with highly mutual crossmappings. 4 and 5 are unidirectionally coupled from 1, 2, and 3.


Summary

« CCM allows predictive modelling of
nonlinear systems (including variable
feedback loops) and detection of
correlation.

* Regulatory actions (climate change,
overfishing, e.g.), economics, data
analysis and experimental design.



Implications: Correlation and
causation

* Bishop Berkeley (1710): «Correlation does
not necessarily imply causation.»

e George Sugihara (nonlinear dynamics):
«Lack of correlation does not imply lack of
causation.»

Correlation Correlation

Causation
— .
Causation



TIME SERIES ANALYSIS

Information leverage in interconnected
ecosystems: Overcoming the curse
of dimensionality

Hao Ye and George Sugihara™

sciencemag.org SCIENCE



The curse of dimensionality

o Complexity = obstacle to overcome!

 In variety of fields including ecology,
finance, neuroscience, medicine...

 Approach 1: Reduce systems to linearly
Independent components.



y coordinate

The curse of dimensionality

Dimensionality reduction primer

A nonlinear 2Ddataset
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¥ coordinate

The curse of dimensionality

Dimensionality reduction primer

Concentric circles

05 Pt T8

0.0 -
s

=15 -10 -05 00 05
x coordinate

PCA

K-PCA

First principal component after Linear PCA

=15

gamma = 15

-15

0.008

PC1

First principal component after RBF Kernel PCA

0.006

0.004

0.002

0.000

—0.002

—0.004

—0.006

—0.008

gamma = 15

—0.06

—0.04 -0.02 000 002 004 006
PC1




The curse of dimensionality

Dimensionality reduction primer

First principal component after Linear PCA
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The curse of dimensionality

 Dimensionality reduction - assume that
causal factors
— do not interact with each other,

— have effects that are independent or additive
(as is valid for truly linear systems that can be
superimposed).



The curse of dimensionality

o Complexity = obstacle to overcome!

 In variety of fields including ecology,
finance, neuroscience, medicine...

 Approach 2: Use complex equation-based
models - often too many parameters to
be precisely determined.



Empirical dynamic modeling

Time series
\Eag of single or multiple variables

Takens’ theorem

™~

Reconstruction of attractor manifold



Multiview embedding
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A:  In interconnected systems with multiple time series observations, many different variable combinations are possible  reconstruct manifold using Takens’ theorem or via e.g. CCM. 

B: Manifolds reconstructed from 25 points per variable (three species) using Takens’ theorem  25 points usually too few to to fully resolve the system behaviour (predict to 1000 points).  

C:  Combine views – In contrast to conventional simplex projection where forecast is based on weighted average of nearest neighbours in single view, top k reconstructions and single nearest neighbour from each view are considered. 


Multiview embedding

A B Univariate view (using z)

Univariate view (usingy)

Nearest neighbors in the
native system view

MVE neighbors in the
native system view

Fig. 2. Nearest-neighbor selection on attractor manifolds. (A) In the native system view, the nearest
neighbors (solid orange points) to the target point (black) are used to predict the future trajectory.
(B) MVE selects the single nearest neighbor in each of the different views to produce a more robust
model. Here, the nearest neighbors (red, green, and blue) to the target point (black) from the three
univariate views (based on lags of x, y, or z, respectively) are used to forecast the future behavior of

the target.



Forecast Skill (p)
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Fig. 3. Comparison of forecast skill for univariate, multivariate, and MVE methods on simul ated
data with 10% observational error. (A to C) Forecast skill (p, correlation between observations and
predictions) versus library size for varizbles x, v, and z in the three-species coupled logistic. Solid lines
indicate average values over 100 randomly sampled libraries; dashed lines denote upper and lower
guartiles. (D to F) Same as (A) to (C) but for the threespecies food-chain model (20). (G to 1) Same as

Comparison
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(A) to (C) but for the flour beetle model (25).
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Apart from formerly shown univeriate and multiview embedded models, a multivariate model was used for testing and the predictability was assessed.
For the univariate model, the lags of only one variable were taken.
For the multivariate model, the lags of all variables were used and the system with the highest in-sample rho was taken.
And this was compared to multiview embedding, their technology, in the way data can be predicted. 


Conclusions

 Main innovation of MVE is to leverage
Interconnectedness of complex systems.

* Noise-mitigating aspects of MVE are
potentially useful for applications such as
signal processing or nonlinear system
control.

* High-dimensionality may be a curse — but
complexity can be advantage promoting
better clarity and prediction.
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