Technical Journal Club

Marco Losa

21.01.2020

Regulating and controlling gene expression in vivo and in vitro

Novel tools may open up the next era of gene therapies in medicine

A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo

Guocai Zhong ^{1,3,4,5*}, Haimin Wang ^{1,4,5}, Wenhui He¹, Yujun Li², Huihui Mou¹, Zachary J. Tickner¹, Mai H. Tran¹, Tianling Ou ¹, Yiming Yin¹, Huitian Diao¹ and Michael Farzan ¹

Nature Biotechnology, 2019

A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo

Guocai Zhong (1,3,4,5*, Haimin Wang 1,4,5), Wenhui He¹, Yujun Li², Huihui Mou¹, Zachary J. Tickner¹, Mai H. Tran¹, Tianling Ou (1, Yiming Yin¹, Huitian Diao¹ and Michael Farzan (1,5)*

Nature Biotechnology, 2019

Paper 2

Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery

Anna M. Chiarella¹, Kyle V. Butler², Berkley E. Gryder³, Dongbo Lu¹, Tiffany A. Wang¹, Xufen Yu², Silvia Pomella^{3,4}, Javed Khan³, Jian Jin²* and Nathaniel A. Hathaway¹*

Nature Biotechnology, 2019

A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo

Guocai Zhong 61,3,4,5*, Haimin Wang 1,4,5, Wenhui He1, Yujun Li2, Huihui Mou1, Zachary J. Tickner1, Mai H. Tran1, Tianling Ou 61, Yiming Yin1, Huitian Diao1 and Michael Farzan 51*

Nature Biotechnology, 2019

Paper 2

Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery

Anna M. Chiarella 1, Kyle V. Butler², Berkley E. Gryder 3, Dongbo Lu¹, Tiffany A. Wang¹, Xufen Yu², Silvia Pomella 4, Javed Khan³, Jian Jin 2 and Nathaniel A. Hathaway 1.

Nature Biotechnology, 2019

→ Harnessing antisense oligonucleotides (Paper 1) and small molecules (Paper 2) to control and regulate (trans)gene expression

Content

- 1.) General introduction
- 2.) Papers
- 3.) Conclusions

Classification of gene therapies:

- a) Class of disease (genetic vs. complex acquired disorder)
- b) Route of action
- c) Gene delivery vehicle (integrating vs. nonintegrating)
- d) Administration route (in vivo or ex vivo)

- a) Class of disease: Gene therapy trials in medicine
- >2500 clinical studies with gene therapies since late 1990s (first one, X-linked SCID, Fischer and colleagues)
- Monogenic diseases, infectious diseases, complex neurodegenerative disorders and cancers

b) Route of action

- Restore normal cellular function by providing a functional copy of a gene in trans (without affecting diseased gene iteself)
- E.g. *in vivo* Leber congenital amaurosis, hemophilias A and B, SMA
- E.g. ex vivo SCID

b) Route of action

- Gene suppression by reducing expression of the mutated gene via RNA interference
- E.g. Huntington's disease

b) Route of action

Corrected cell

Diseased cell

Non-functional allele
Functional allele following targeted gene insertion

- Gene-specific editing is enhanced by the induction of DNA double-strand breaks at the target site
 → Choice of DNA repair mechanism over another will determine the outcome of genome editing:
- E.g. exogenous template coding for a funcitonal gene,
 DNA repair may result in a in situ correction of mutated gene via homologous recombination
- E.g. DNA cleavage occurs, break rejoined by nonhomologous end joining → knock-down if repair is imperfect
- E.g Insertion of DNA template via non-homologous end joining → gene addition rather than correction

c) Gene delivery vehicle: Viral vectors used

Features	Retroviral	Lentiviral
Viral genome	RNA	RNA
Cell division requirement for target cell	Yes	G1 phase
Packaging limitation	8 kb	8 kb
Immune responses to vector	Few	Few
Genome integration	Yes	Yes
Long-term expression	Yes	Yes
Main advantages	Persistent gene transfer in dividing cells	Persistent gene transfer in transduced tissues

- Belongs to the class of retroviruses (like HIV)
- Carried transgene(s) integrate into genome
- Stable expression in dividing and non-dividing cells (used for stable cell lines)
- Infection of any mammalian cell type possible (VSV-G instead of env gene)

c) Gene delivery vehicle: Viral vectors used

Features	Retroviral	Lentiviral	Adenoviral	AAV
Viral genome	RNA	RNA	DNA	DNA
Cell division requirement for target cell	Yes	G1 phase	No	No
Packaging limitation	8 kb	8 kb	8–30 kb	5 kb
Immune responses to vector	Few	Few	Extensive	Few
Genome integration	Yes	Yes	Poor	Poor
Long-term expression	Yes	Yes	No	Yes
Main advantages	Persistent gene transfer in dividing cells	Persistent gene transfer in transduced tissues	Highly effective in transducing various tissues	Elicits few inflammatory responses, nonpathogenic

Lentivirus-based systems:

- Belongs to the class of retroviruses (like HIV)
- Carried transgene(s) integrate into genome
- Stable expression in dividing and non-dividing cells (used for stable cell lines)
- Infection of any mammalian cell type possible (VSV-G instead of env gene)

AAV-based systems:

- Single-stranded DNA genome, infects human and some primates
- Virus lacks of pathogenicity (very mild immune response)
- Naturally occurring AAV poorly integrates into genome but only at AAVS1 locus on Chr. 19 (safe harbor)
- If no integration occures (used vectors), genome persists episomal (extrachromosomal)

AAV serotypes defines tissue specificity

Serotype	Primary target tissue	Description
AAV-1	Muscle	Best for cardiac muscle, skeletal muscle, neuronal and glial tissue.
AAV-2	Muscle, Liver, Retina	Most commonly-used serotype. Best for neurons, muscle, liver, and brain.
AAV-3	Megakaryocytes	Best for megakaryocytes, muscle, liver, lung, and retina.
AAV-4	Retina	Best for neurons, muscle, brain, and retina.
AAV-5	Lung	Best for lung, neurons, synovial joint, retina, and pancreas.
AAV-6	Muscle, Lung	Best for lung, liver, and heart.
AAV-7	Muscle, Retina, Neurons	Best for muscle, neurons, and liver.
AAV-8	Liver	Best for muscle, brain, liver, and retina.
AAV-9	Various	Best for muscle, heart, liver, lung, and brain.
AAV-10	Pleura, CNS	Cloned from Cynomolgus, almost identical with AAVrh10 except for 12 amino acids in VP1. Best for lung, muscle, heart, NCS and liver.
AAV-DJ	Various	A mixture of 8 naturally-occurring serotypes. Efficiently transduces a wide variety of cell types in vitro.
AAV- DJ/8	Various	A variant of AAV-DJ with a heparin binding domain (HBD) mutation, which permits infection of liver as well as other tissues in vivo.

Table 2. List of widely-used AAV serotypes

AAV serotypes defines tissue specificity

Serotype	Primary target tissue	Description
AAV-1	Muscle	Best for cardiac muscle, skeletal muscle, neuronal and glial tissue.
AAV-2	Muscle, Liver, Retina	Most commonly-used serotype. Best for neurons, muscle, liver, and brain.
AAV-3	Megakaryocytes	Best for megakaryocytes, muscle, liver, lung, and retina.
AAV-4	Retina	Best for neurons, muscle, brain, and retina.
AAV-5	Lung	Best for lung, neurons, synovial joint, retina, and pancreas.
AAV-6	Muscle, Lung	Best for lung, liver, and heart.
AAV-7	Muscle, Retina, Neurons	Best for muscle, neurons, and liver.
8-VAA	Liver	Best for muscle, brain, liver, and retina.
AAV-9	Various	Best for muscle, heart, liver, lung, and brain.
AAV-10	Pleura, CNS	Cloned from Cynomolgus, almost identical with AAVrh10 except for 12 amino acids in VP1. Best for lung, muscle, heart, NCS and liver.
AAV-DJ	Various	A mixture of 8 naturally-occurring serotypes. Efficiently transduces a wide variety of cell types in vitro.
AAV- DJ/8	Various	A variant of AAV-DJ with a heparin binding domain (HBD) mutation, which permits infection of liver as well as other tissues in vivo.

Table 2. List of widely-used AAV serotypes

Some clinical trials using AAV-based vectors

Indication	Gene	Route of administration	Phase	Subject number	Status
	CFTR	Lung, via aerosol	1	12	Complete
Cystic fibrosis	CFTR	Lung, via aerosol	H	38	Complete
	CFTR	Lung, via aerosol	II	100	Complete
Hemophilia B	FIX	Intramuscular	1	9	Complete
пенюрина в	FIX	Hepatic artery	1	6	Ended
Arthritis	TNFR:Fc	Intraarticular	1	1	Ongoing
Hereditary emphysema	AAT	Intramuscular	1	12	Ongoing
Leber's congenital amaurosis	RPE65	Subretinal	I–II	Multiple	Several ongoing and complete
Age-related macular degeneration	sFlt-1	Subretinal	I–II	24	Ongoing
Duchenne muscular dystrophy	SGCA	Intramuscular	1	10	Ongoing
Parkinson's disease	GAD65, GAD67	Intracranial	1	12	Complete ^[24]
Canavan disease	AAC	Intracranial	1	21	Ongoing
Batten disease	CLN2	Intracranial	1	10	Ongoing
Alzheimer's disease	NGF	Intracranial	1	6	Ongoing
Spinal muscular atrophy	SMN1	Intravenous and Intrathecal	I–III	15	Several ongoing and complete
Congestive heart failure	SERCA2a	Intra-coronary	IIb	250	Ongoing

Potential complications of clinical gene therapies

Potential complications of gene therapy	Strategies to mitigate risks
Gene silencing—repression of promoter	Use endogenous cellular promoters, avoid viral-derived regulatory
	sequences
Genotoxicity—complications arising from insertional	Use vectors with safer integration profile (e.g., self-inactivating
mutagenesis	lentiviral vectors)
	Sequence-specific integration (i.e., genome editing)
Phenotoxicity—complications arising from overexpression	Control transgene expression spatially (e.g., endogenous,
or ectopic expression of the transgene	tissue-specific promoters) and temporally (on/off switch)
Immunotoxicity—harmful immune response to either the	Carefully monitor T cell reactivity to the vector and transgene to
vector or transgene	initiate immune suppression if needed
Risk of horizontal transmission ^a —shedding of infectious	Monitor vector shedding in preclinical models when developing novel
vector into the environment	vectors
Risk of vertical transmission—germline transmission of	Use of barrier contraceptive methods until vector shedding is negative
donated DNA	

Potential complications of clinical gene therapies

Potential complications of gene therapy	Strategies to mitigate risks	
Gene silencing—repression of promoter	Use endogenous cellular promoters, avoid viral-derived regulatory sequences	
Genotoxicity—complications arising from insertional mutagenesis	Use vectors with safer integration profile (e.g., self-inactivating lentiviral vectors) Sequence-specific integration (i.e., genome editing)	_
Phenotoxicity—complications arising from overexpression or ectopic expression of the transgene	Control transgene expression spatially (e.g., endogenous, tissue-specific promoters) and temporally (on/off switch)	Р
Immunotoxicity—harmful immune response to either the vector or transgene	Carefully monitor T cell reactivity to the vector and transgene to initiate immune suppression if needed	•
Risk of horizontal transmission ^a —shedding of infectious vector into the environment	Monitor vector shedding in preclinical models when developing novel vectors	
Risk of vertical transmission—germline transmission of donated DNA	Use of barrier contraceptive methods until vector shedding is negative	

Paper 1 and 2

One remaining challenge (out of many):

→ There is a lack of safe, controllable, small and *in vivo* compatible regulatory mechanisms for gene therapies useful in (human) diseases

A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo

Guocai Zhong^{1,3,4,5*}, Haimin Wang^{1,4,5}, Wenhui He¹, Yujun Li², Huihui Mou¹, Zachary J. Tickner¹, Mai H. Tran¹, Tianling Ou¹, Yiming Yin¹, Huitian Diao¹ and Michael Farzan¹

Nature Biotechnology, 2019

Introduction

- Gene therapies are limited by the lack of small genetic switches with wide dynamic ranges that control transgene expression without the requirement of additional protein components.
- Problem: In vivo regulation and control of transgene expression

Goals:

- (a) Create a novel ON-switch in vivo
- (b) **Reversible** system which increases safety and reliability
- (c) The switch must **not be a protein** and should be able to administer in humans/mice
- (d) Switch should be **small**
- (e) Switch should be **incorporated into** the gene therapy **vector**
- (f) The introduced system/transgene should 'by default' be inactive without leakage
- (g) Long-term and high (trans)gene expression should be reliable

Ribozymes

- Ribozymes are RNA molecules with a catalytical ability
- Small in size (<200bp)
- Conserved and present in many species
- Different classes and types of ribozymes:
- -E.g. 28S-rRNA synthetizes peptid bond in translation (protein required for stabilization of ribozyme)
- -E.g. Spliceosomes, which are ribozymes (protein required for stabilization of ribozyme)
- Ribozymes without the assistance of a protein: Hammerhead-Ribozymes (HHR)
- Some classes of ribozymes do have self-cleaving capability to form their final funcional state

Watson-Crick base-pairing: orange lines Hydrogen-bonding interactions: black lines Nonadjacent base stacking: green line

Schistosoma mansoni type I HHR

Methods

Rationale/Idea

- Introduction of an AAV delivered transgene system
- Usage of a hammer-headed ribozyme (HHR) sequence 3'- to the transgene
- Engineering of a powerful and reliable self-cleaving HHR
- Upon self –cleavage release of mRNA 3'-UTR that leads to mRNA degradation 'by default'

- Cell culture (293T cells) based reporter inhibition assay to test ribozymal catalytic activity:
- → Ribozyme sequence introduced 3'-UTR of Gaussia luciferase (Gluc) gene
- → Read out: fold inhibition of Gluc expression relative to expression observed with a corresponding inactive mutant)

Methods

Rationale/Idea

→ Antisense oligonucleotide (Morpholino) administration leads to cutting deficiency of HHR and 'switches' protein expression on

Methods

Rationale/Idea

→ Antisense oligonucleotide (Morpholino) administration leads to cutting deficiency of HHR and 'switches' protein expression on

Engineering a class of highly efficient hammerhead ribozymes

Hypothesis

- → Idea: Less leakage due to faster disassembly and less re-ligation
- → Type III: Faster disassembly and less re-ligation due to shorter leaving strand and less energy needed
- → Shorter leaving strand may has fewer tertiary interactions

Engineering a class of highly efficient hammerhead ribozymes

Evolution of N107 ribozyme in this study

→ Converting type I HHR to type III significantly improved ribozyme activity (from 18-to 134-fold)

Ribozyme insertion on 3'-UTR improves inhibition

 T3H1 outperformed N107 in all cell lines when insertd at 3'-UTR

- Insertion on 5'-UTR not much of a difference
- → Maybe cellular helicases promote disassembly of both ribozymes
- → Not reasonable to put the switch on 5'-UTR

Engineering a class of highly efficient hammerhead ribozymes

Evolution of N107 ribozyme in this study

- → Modification of HHR stem III significantly improved ribozyme activity (from 134-fold to approx. 300-fold)
- → Enzymatic activity seems to be optimal with 6-bp stem III

Engineering a class of highly efficient hammerhead ribozymes

Evolution of N107 ribozyme in this study

- → Engineer type I HHR to III HHR,
- → Modification of stem III and I significantly improved ribozyme activity (from approx. 300-fold to 730-fold)

Engineering a class of highly efficient hammerhead ribozymes

Evolution of N107 ribozyme in this study

- → Engineer type I HHR to III HHR, stem III, stem I on loop I significantly improved ribozyme activity
- → Total increase from 18-fold to 1200-fold inhibition (increased catalytical activity→ less re-ligation→ less GLuc)
- → No 'leakage'
- → T3H38, T3H48, T3H52 were taken for further experiments

Engineering a class of highly efficient hammerhead ribozymes

Summary of evolution of N107 ribozyme in this study

Efficient regulation of gene expression using optimized type III HHR ribozymes

- → Cell type dependent activities of ribozyme variants and v-M8 Morpholino
- → They proceeded with T3H38+v-M8

In vivo induction of an AAV-delivered reporter transgene (fire fly luciferase (Fluc))

In vivo schematic

AAV Intron T3H38 AAV i.m. injection Morpholino administration (i.m.) In vivo bioluminescence imaging AAV1 is muscle specific

- ITRs in cis (close to transgene) and form hairpins (self priming) and allow primase-independent synthesis of second DNA strand
- Can anneal and form concatemers
- Important for encapsidation of virus
- Rep and cap proteins in trans

Read-out

No Fluc Expression (catalytic cleavage) v-M8 induced expr.

in vivo

Fluc Expression (no catalytic cleavage)

In vivo induction of an AAV-delivered reporter transgene (fire fly luciferase (Fluc))

→ Dose-dependent induction of luciferase expression

In vivo induction of an AAV-delivered reporter transgene (fire fly luciferase (Fluc))

→ T3H38+ v-M8 system induces Fluc for several weeks (long-term gene expression)

Reliable in vivo induction of Erythropoietin (Epo) using the engineered type III HHR system

- → T3H38+ v-M8 system induces reliably Epo expression
- → Initial high hematocrit levels

Reliable in vivo induction of Erythropoietin (Epo) using the engineered type III HHR system

- → T3H38+ v-M8 system induces reliably Epo expression
- → Initial high hematocrit levels

Reliable in vivo induction of Erythropoietin (Epo) using the engineered type III HHR system

Blood collection for hematocrit and plasma Epo measurements

Morpholino administration (i.m.)

→ Physiological hematocrit levels seem to be possible

Reliable in vivo induction of Erythropoietin (Epo) using the engineered type III HHR system

→ Physiological hematocrit levels up to 70 days after AAV infection

Summary Paper 1

- +
- Successful implementation of a promotor independent, well controllable (ON-switch)
 in vivo transgene expression system
- System allows to delay transgene expression well until AAV-induced innate immune responses subside and may prevent emergence of the anti-transgene antibodies observed with other AAVbased systems
- Regulatory element only 63bp
- Local administration and induction allow two or more therapeutics in the same individual
- Morpholinos have been approved for human in from the FDA up to 50 mg/kg
- Long lasting induction of transgene upon Morpholino administration, beneficial for short half-life proteins like Epo.
- Single and well tolerated Morpholino doses can be administered
- Engineered ribozyme allowed the reduction of 'leakage' (protein expression the absence of antisense oligo)
- Only one transgene (Epo) tested in the study
- Large genes (>4.8kb are unsuitable for standard AAV vectors

Paper 2

Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery

Anna M. Chiarella 1, Kyle V. Butler², Berkley E. Gryder 3, Dongbo Lu¹, Tiffany A. Wang¹, Xufen Yu², Silvia Pomella 4, Javed Khan³, Jian Jin 2² and Nathaniel A. Hathaway 1²

Nature Biotechnology, 2019

Introduction

- Genes can be activated or suppressed using CRISPR-Cas9 systems. However, tools that enable dose-dependent activation of gene expression without the use of exogenous transcription of regulatory proteins are lacking.
- Problem: **Dose-dependent activation** of (trans)gene expression using small molecules
- Goals:
 - (a) Create a novel tool which harnesses small molecules for gene expression regulation
 - (b) Reversible and competeable system
 - (c) Potentially useful for in vivo studies
 - (d) **Activation of endogenous genes** should be **similar to established CRISPRa systems** (e.g. d Cas9-VPR)

Methods

Rationale/Idea

Using chemical epigenetic modifiers (CEMs) to increase gene activation

Methods

Rationale/Idea

Using chemical epigenetic modifiers (CEMs) to increase gene activation

CEMs with their recruitment protein

Characterisation of dCas9-FKBP system

Treatment with individual recruitment components

- → No GFP expression with iBet762 and FK506
- → CEM linker-dependent activation

Optimisation and characterisation of dCas9 recruitment strategies

Ms2-tagging (gRNA containing MS2-compatible stem loops)

- Natural RNA-Protein interaction of MS2 bacteriophage coat protein with a stem loop structure from viral RNA to repress viral replicase in noninfected cells
- Used to monitor RNA at the site of translation
- Here: interaction of MS2 protein and gRNA (stem loops) from CRISPR system

Optimisation and characterisation of dCas9 recruitment strategies

→ FKBP fusions must be strategically chosen not just increased in numbers

Optimisation and characterisation of dCas9 recruitment strategies

→ FKBP fusions must be strategically chosen not just increased in numbers

Optimisation and characterisation of dCas9 recruitment strategies

Optimisation and characterisation of dCas9 recruitment strategies

Time-course of final strategy with CEM87 and CEM114

→ GFP expression was highest 48 hours post CEM recruitment

The dCas9-HA; ms2-FKBPx2 system is reversible

→ Gene expression activation is competable

The dCas9-HA; ms2-FKBPx2 system is reversible

→ Gene expression is reversible upon time (CEM washout)

Dose-dependent transgene (GFP) activation using dCas9-HA; MS2-FKBPx2 system

→ Dose-dependent regulation of gene (GFP) activation between 6.25 and 200 nM of CEM87 and CEM114

Endogenous gene (MYOD1) targeted using optimized dCas9-CEMa system

- → dCas9-HA system has no MYOD1 expression without CEM87 (almost no leakage)
- → dCas9-p300 and dCas9-VPR systems activate MYOD1 expression upon transfection

→ dCas9-HA;ms2-FKBP activates MYOD1 gene expression upon CEM87 addition in a dose-dependent manner

Endogenous gene (MYOD1) targeted using optimized dCas9-CEMa system

→ After 96 hrs CEM87 activation of MYOD1 (in HEK293T cells) was no longer significant

Benchmarking the dCas9-HA;ms2-FKBP system to current dCas9 activating systems

- → Similar activation to dCas9-VPR and dCas9-p300
- → CEM114 does not activate the CXCR4 gene
- → Low expressing genes: IL1RN, OCT4 (both significantly increased)
- → High expressed gene: 1 gRNA MYC1 (no significant CEM87-induced activation)
- → Groups created a set of gRNA targeting super-enhancer (SE) network controlling MYOD1 and there was a significant increase in MYOD1 expression (indirect activation)

Summary Paper 2

+

- Establishment of a tool using small molecules for gene activation in vitro
- Successful dose-dependent activation of endogenous/ transgene expression using CRISPR and CEMs
- Reversible and competeable system which may be useful for in vivo gene therapies
- Low expressing genes can be activated similarly to established CRISPR activators
- Possible indirect activation of genes (e.g. MYOD1)

- No data regarding bioavailability/toxicity of CEMs since only in vitro data published
- Highly expressed genes are difficult to activate/control with the CEMa system

3.) Conclusions

- Successful implementation of reversible switches and regulators harnessing antisense oligonucleotides and small molecules
- Efficient and safe regulation of (trans)gene expression may allow the use of modern gene therapies in various (human) diseases in the future

Thank you for your attention