
The single cell transcriptome in time and 
space

Technical Journal Club

Manfredi Carta

26.11.2019





Background

- RNA abundance indicates the state of individual cells

- Single cell RNA sequencing is now highly accurate, sensitive and high-
throughput, but only provides a snapshot at a point of time 
 time-resolved phenomena (e.g. embryogenesis, tissue regeneration) 
are difficult to analyse

- During development, differentiation occurs on a timescale of hours to days 
= comparable to the typical half-life of mRNA

- Here, measuring the relative abundance of unspliced and spliced mRNA 
allows estimation of the time derivative of the gene expression state: RNA 
velocity



Background

- scRNA-seq protocols rely on oligo-dT primers to enrich poly-A mRNA 
molecules

- Nevertheless, 15-25% of scRNA-seq reads contain unspliced intronic 
sequences

- Originate from secondary priming positions in introns (polyA)
- Represent unspliced precursor mRNAs

- Time-dependent changes in the abundance of unspliced and spliced mRNA 
have been observed in HEK cells incubated with 4-thiouridine (4sU)

- 4sU in incorporated into mRNA, which can then be pulled out
- Labelled mRNA molecules increase over time



mRNA abundance during a dynamic process

- Red area: increasing expression of a gene  unspliced (u) mRNA are in 
excess

- γ (diagonal line): constant transcription  equilibrium of unspliced and 
spliced (s) RNA 

- Blue area: decreasing expression  spliced mRNA are in excess

RNA velocity: time derivative of the gene expression state

The balance of unspliced and spliced indicates the future state of the cell

transcription

unspliced

spliced



RNA-seq of circadian genes over 24 h (bulk liver mRNA)

Cbs: cystathionine beta-synthase
Fgf1: fibroblast growth factor 1

Abundance of spliced 
and unspliced mRNA



RNA-seq of circadian genes over 24 h (bulk liver mRNA)

Cbs: cystathionine beta-synthase
Fgf1: fibroblast growth factor 1

• Future state of cell can be predicted based on current state (circle) 
and velocity estimates (vector)

• Model based on differential equations for every circadian gene



RNA velocity during adrenal medulla development

Development of adrenal medulla on embryonic day 12.5

a: Schwann cell precursors (SCP) differentiate into chromaffin cells
b,c: During differentiation, unspliced-spliced phase portraits of many genes 
deviate from steady-state equilibrium

Furlan et al., Science 2017



RNA velocity during adrenal medulla development

Velocity vectors of individual cells point towards expected fate

Estimated RNA velocity correlated with changes detected using metabolic 
labelling



RNA velocity: Hippocampal development

t-SNE and RNA velocity of hippocampal cells
Arrows: average local velocity

Kriegstein et al., Annu. Rev. Neusci. 2009

nIPC: neurogenic intermediate progenitor cell
OPC: oligodendrocyte progenitor cell

Identification of cell types 
based on expression of TF
(w/o vascular cells)



RNA velocity: Hippocampal development Endpoints = differentiated cells: 
lowest probability of velocity 
transition (Markov modelling)

Root = radial glia: 
highest probability of 
velocity transition

Summary of velocity 
field

Prox1: transcr. factor required 
for granule cell development



Fate choice in OPCs

Pdgfra: marker for OPCs 
• Induced in pre-OPCs, 

positive velocity
• Expressed in OPCs, 

stable

Narrow passage: 
might represent 
moment of OPC 
lineage 
commitment



Fate choice in OPCs

As a cell progresses along 
the “differentiation bridge”, 
the probability of 
transitioning back declines

Transcription factor feedback loops lock the cell into the OPC fate



Fate of neuroblasts

Igfbpl1:
• Expr. in neuroblasts
• positive velocity from 

radial glia to neurobl.
• Negative velocity from 

neurobl. to neuronal 
branches

Igfbpl1: insulin-like growth factor binding protein-like 1



Two transcriptionally similar neuroblasts with different fates

Main difference: Prox1 expression

Low Prox1: CA fate is likely

High Prox1: granule cell fate 
is likely

Prox1 is required for granule cell development
Prox1 deletion in neuroblasts  diff. to pyramidal neurons



Human embryonic glutamatergic neurogenesis (10 weeks, forebrain, 
droplet-based scRNA-seq)

Expression of markers
• SOX2: radial glia
• EOMES: neuroblasts
• SLC17A7: neurons

Multiplexed in-situ 
hybridisation: Layered 
expression of markers in 
tissue corresponds to 
pseudo-temporal 
distribution in scRNA-seq 
data



RNA velocity: Summary

scRNA-seq «snapshot» of unspliced and spliced mRNA abundance can yield 
information about dynamic temporal processes, such as cell differentiation

• Future state of cell can be predicted based on current state and RNA 
velocity

• Velocity can be modelled over «pseudotime»

• Stochastic modelling yields probability of transition into other cell states

• RNA velocity can be visualised on PCA / t-SNE plots
• Note: Cells can have RNA velocities across many independent 

components simultaneously (e.g. differentiation, maturation, 
proliferation), which may not be visible in PCA, t-SNE etc.

• Future algorithms might simultaneously fit a principle component 
manifold and RNA kinetics





Background

• When performing scRNA-seq, tissues often have to be dissociated
 Loss of information about spatial relationships and communication 

between cells

• Existing approaches to reconstruct tissues assign spatial positions to each 
cell, independently of other cells, by using a marker gene expression 
reference atlas 

• e.g. a map of in situ RNA patterns (Satija. et al, Nat Biotechnol 2015)
• No information is currently available on the spatial expression of many 

genes  precise cell mapping is often impossible



novoSpaRc: Workflow

1. Distances are computed for each pair of cells on graphs for expression 
space and physical space

2. Distances of pairs of cells are aligned in a way that is consistent with 
known spatial expression profiles of marker genes (used as anchors)

3. Probabilistic map that assigns each cell a distribution over locations on the 
physical space is obtained. Mapping of cell pairs is formulated as optimal 
transport problem.
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Optimal transport: Classic example
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• What is the optimal transport plan with the lowest cost?



novoSpaRc: Workflow

1. Distances are computed for each pair of cells on graphs for expression 
space and physical space

2. Distances of pairs of cells are aligned in a way that is consistent with 
known spatial expression profiles of marker genes (used as anchors)

3. Probabilistic map that assigns each cell a distribution over locations on the 
physical space is obtained. Mapping of cell pairs is formulated as optimal 
transport problem.

Optimal transport: Classic example
• n mines produce iron ore and n factories use the iron ore
• Every mine supplies one factory
• Transport comes at a cost which increases with distance
• What is the optimal transport plan with the lowest cost?

?
?

?



Reconstruction of symmetrical tissues: Intestinal epithelium

Cells are aligned along the crypt-
villus axis

Expression and spatial distance 
show a monotonic relationship

Hypothesis: distances in expression state and physical space 
correspond to each other



Reconstruction of symmetrical tissues: Intestinal epithelium

Reconstructed distribution correlates 
well with actual pattern (r = 0.99)

Reconstruction captured known 
gene expression “division of 
labour”

In intestinal epithelium, cells have previously been classified into 7 
distinct expression zones (Crypt, V1, V2 … V6)



Reconstruction of symmetrical tissues: Liver lobule

Cells are assigned to 9 layers Expression and spatial distance 
show a monotonic relationship



Reconstruction of symmetrical tissues: Liver lobule

Reconstructed distribution correlates 
well with actual pattern (r = 0.94)

Spatial expression patterns of 
pericentral and periportal genes 
can be replicated 

(relevant to next paper)



Reconstruction of a stage 5 Drosophila embryo

• In stage 5 of development, Drosophila embryos consist of ~6000 cells

• The expression levels of 84 TF have been quantitively registered using 
FISH (Berkeley Drosophila Transcription Network Project, BDTNP)

• scRNA-seq data was obtained from the BDTNP dataset

• Tissue reconstruction was performed 1. de novo and 2. with use of 
marker genes as reference

• Again, monotonic relationship between expression and spatial distance



Reconstruction results compared to FISH data

Reconstruction results for 4 TF and individual cells, using 0-2 marker genes 
as reference, compared to FISH data (top)

2 marker genes are sufficient to create accurate reconstructions



Reconstruction of mouse cerebellar slice

Correlation with known cell 
distribution increases with no. of 
employed anchor genes

Pcp4: Purkinje 
cell protein 4



Reconstruction of mouse cerebellar slice

Meg3: maternally-
expressed gene 3

Nefl: neurofil. light chain

Neurod1: neuronal 
differentiation 1

Mbp: myelin basic 
protein 



Gene expression cartography: Summary

• Diverse biological tissues can be reconstructed from existing scRNA-seq 
datasets based on a simple hypothesis: There is a structural 
correspondence between the distances between cells in expression space 
and in physical space

• Anchoring with known marker genes improves the reconstruction – if not, 
the reconstr. is subject to global transformations (e.g. mirroring)

• Previously unknown spatially informative genes could be identified (e.g. 
long non-coding RNAs, transcription factors)

• Can the method handle tissue surfaces in more complex tissues?





Background

• In spatial transcriptomics, determining zonation of small cells with low 
mRNA content or without highly expressed landmark genes remains 
challenging

• In the liver, hepatocytes and diverse non-parenchymal cells (NPCs) are 
arranged in lobules – repeating, hexagonal units

• Lobules are composed of a central vein, radial sinusoidal networks and 
portal nodes (arteries, veins and bile ducts)

• Lobule blood vessels are lined with liver endothelial cells (LECs)



Liver lobule

• The lobule microenvironment gives rise to spatial division of labour among 
hepatocytes, depending on radial coordinates

• It is unknown whether liver non-parenchymal cells exhibit similar spatial 
division of labour

Portal
node

Central vein



Liver lobule

• Liver endothelial cells (LECs) make up about 50% of liver NPCs

• Form building blocks of blood vessels, clear endotoxins and bacteria, regulate 
immune responses, present antigens, secrete morphogens that shape 
hepatocyte gene expression

• LECs at different lobule radial coordinates are known to posess morphological 
differences, but their gene expression hasn’t been characterised



Overview

• A previous study used scRNA-seq and FISH to construct a panel of hepatocyte 
landmark genes, which differed according to radial coordinates (Halpern et al., 
Nature 2017)

• scRNA-seq of LECs is challenging, given their small size  transcripts of most 
genes won’t be present in individual LECs

• LEC zonation pattern is unknown  no reference available for mapping

Sequence RNA of hepatocyte-LEC pairs  characterise gene 
expression of hepatocytes (known transcriptional profile) and LECs that 
are attached to them in the tissue

 Resolution of LEC zonation pattern



Paired-cell sorting and sequencing

• Liver tissue was dissociated with collagenase D, which is less efficient than 
other tissue dissociation enzymes (e.g. Liberase)  cell pairs could be 
retained

• FACS: gating for hepatocytes (based on size) and CD31+ (endothelium) 
hepatocyte-LEC doublets



Paired-cell sorting and sequencing

Hepatocyte-LEC doublets are sorted into wells  scRNA-seq

Removal of hepatocyte clusters

Imagestream: sorted pairs

Retention of hepatocyte-
LEC doublets



Filtering paired RNA sequencing data

Removal of non-target events
• Filtering out of wells that didn’t contain markers of both cell types

Selection of ligand-receptor gene pairs that are known to be zonated
1. Rspo3, Wnt9b: pericentral
2. Efnb2, Dll4: periportal

• Pairs with pericentral or periportal genes also showed matching enrichment / 
depletion of pericentral / periportal hepatocyte transcripts  very few artifactual 
pairs

Rspo3: R-spondin 3
Wnt9b: Wnt family 9b
Efnb2: Ephrin B2
Dll4: Delta-like Notch 
ligand 4



Anatomical reconstruction

Zonation
• Pairs were assigned a scaled radial coordinate (1-8), based on ratio of summed 

expression of 21 pericentral and 30 periportal hepatocyte landmark genes 
(previously identified)

Landmark genes with high expression and low inter-mouse variability



Anatomical reconstruction

Endothelial genes
• Focus on genes that are strongly expressed in endothelium, relative to 

hepatocytes
• Exclusion of genes that are zonated in hepatocytes (otherwise, zonation of 

endothelium might falsely be attributable to hepatocyte transcripts)
• Removal of immune cell genes
• Selection of endothelial genes that were differentially expressed, according to 

zonation

1303 LEC-specific genes, 475 of which were zonated (35%) 



Zonated LEC-specific genes

Zonation patterns can be confirmed by smFISH

Expression profiles



FISH of LEC-specific genes

Rspo3 (green) is highly expressed in 
LEC surrounding the central vein (CV)

Red: Aqp1 (LEC marker)

In LEC lining the central vein, Wnt2 (red) and 
Dkk3 (green) are expressed by distinct cells

Dkk3: Dickkopf-related protein 3, antagonist of 
Wnt2

Scale bar: 5µm

Expression (fraction of total UMI)



Characteristics of zonated LECs

• Pericentral LECs express Wnt2, Wnt9b and Rspo3, which are known to be 
essential for maintenance of hepatocyte zonation

• Discovery of more pericentral LEC markers: Thbd, Cdh13, Fabp4, Kit (can be 
used as sorting markers)

• Differentially expressed in central vein LECs (Wnt2↑) and sinusoidal LECs 
(Wnt2 ↑ ↑)  finer classification of LECs

• Genes repressed in pericentral LECs: Bmp2, Stab1

Thbd: Thrombomodulin
Cdh13: Cadherin 13 
Fabp4: fatty acid binding protein 4
Bmp2: Bone morphogenetic protein 2
Stab1: Stabilin 1



FACS sort based on Kit (Cd117) expression

• Gating for LECs (CD31+CD45-)
• 4 sorted groups with different 

levels of Kit expression

• The 4 groups show expected 
levels of zonated LEC gene 
expression (qPCR, paired cell 
RNA-seq)



Paired-cell sequencing: Summary

• Development of paired-cell sequencing: spatial information is extracted from 
endothelial cells, based on spatial information of attached parenchymal cells 
 reconstruction of location within lobule

• Liver endothelial cells (LECs) showed spatial transcriptomic heterogeneity, 
based on location along lobule radial axis

• Uncovered molecular signature of pericentral LECs

• Zonated expression of markers (here: Kit) allows sorting of specific LEC 
subsets

• Paired-cell sequencing could be applied to many more tissues, tumours etc.

Limitations
• Hepatocytes are often adjacent to more than one type of LEC (arterial, 

venous, sinusoidal)  could not be distinguished
• In FISH, different types of endothelium showed different expression of Rspo3, 

Wnt etc.



Thank you for your attention
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