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Background

- RNA abundance indicates the state of individual cells

- Single cell RNA sequencing is now highly accurate, sensitive and high-
throughput, but only provides a snapshot at a point of time
—> time-resolved phenomena (e.g. embryogenesis, tissue regeneration)
are difficult to analyse

- During development, differentiation occurs on a timescale of hours to days
= comparable to the typical half-life of mMRNA

- Here, measuring the relative abundance of unspliced and spliced mRNA
allows estimation of the time derivative of the gene expression state: RNA
velocity



Background

- SCRNA-seq protocols rely on oligo-dT primers to enrich poly-A mRNA
molecules

- Nevertheless, 15-25% of scRNA-seq reads contain unspliced intronic

sequences
- Originate from secondary priming positions in introns (polyA)
- Represent unspliced precursor mRNAS

- Time-dependent changes in the abundance of unspliced and spliced mRNA
have been observed in HEK cells incubated with 4-thiouridine (4sU)
- 4sU in incorporated into mMRNA, which can then be pulled out
- Labelled mRNA molecules increase over time
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MRNA abundance during a dynamic process
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RNA velocity: time derivative of the gene expression state

The balance of unspliced and spliced indicates the future state of the cell



RNA-seq of circadian genes over 24 h (bulk liver mRNA)
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Cbs: cystathionine beta-synthase
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RNA-seq of circadian genes over 24 h (bulk liver mRNA)
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« Future state of cell can be predicted based on current state (circle)
and velocity estimates (vector)
* Model based on differential equations for every circadian gene

Cbs: cystathionine beta-synthase
Fgfl: fibroblast growth factor 1



RNA velocity during adrenal medulla development
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b,c: During differentiation, unspliced-spliced phase portraits of many genes
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RNA velocity during adrenal medulla development

Velocity vectors of individual cells point towards expected fate

Estimated RNA velocity correlated with changes detected using metabolic
labelling



Kriegstein et al., Annu. Rev. Neusci. 2009

RNA velocity: Hippocampal development
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. Endpoints = differentiated cells:
RNA velocity: Hippocampal development lowest probability of velocity

transition (Markov modelling)

_ -
n | Diffusion
(end points)
E Root = radial glia:

& _  Density highest probability of
Low High velocity transition

Back-diffusion
(root)

Summary of velocity
field

Prox1: transcr. factor required
for granule cell development



Fate choice in OPCs

Pre-OPC
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» Expressed in OPCs,
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Fate choice in OPCs
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Fate of neuroblasts
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Two transcriptionally similar neuroblasts with different fates
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Prox1 is required for granule cell development
Prox1 deletion in neuroblasts - diff. to pyramidal neurons



Human embryonic glutamatergic neurogenesis (10 weeks, forebrain,

droplet-based scRNA-seq)
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RNA velocity: Summary

ScRNA-seq «shapshot» of unspliced and spliced mRNA abundance can yield
information about dynamic temporal processes, such as cell differentiation

Future state of cell can be predicted based on current state and RNA
velocity

Velocity can be modelled over «pseudotime»
Stochastic modelling yields probability of transition into other cell states

RNA velocity can be visualised on PCA/ t-SNE plots
* Note: Cells can have RNA velocities across many independent
components simultaneously (e.g. differentiation, maturation,
proliferation), which may not be visible in PCA, t-SNE etc.
« Future algorithms might simultaneously fit a principle component
manifold and RNA kinetics
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Background

 When performing scRNA-seq, tissues often have to be dissociated
—> Loss of information about spatial relationships and communication
between cells

« EXxisting approaches to reconstruct tissues assign spatial positions to each
cell, independently of other cells, by using a marker gene expression
reference atlas

* e.g. a map of in situ RNA patterns (Satija. et al, Nat Biotechnol 2015)
* No information is currently available on the spatial expression of many
genes - precise cell mapping is often impossible



novoSpaRc: Workflow

1. Distances are computed for each pair of cells on graphs for expression
space and physical space

2. Distances of pairs of cells are aligned in a way that is consistent with
known spatial expression profiles of marker genes (used as anchors)

3. Probabilistic map that assigns each cell a distribution over locations on the
physical space is obtained. Mapping of cell pairs is formulated as optimal
transport problem.
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novoSpaRc: Workflow

1. Distances are computed for each pair of cells on graphs for expression
space and physical space

2. Distances of pairs of cells are aligned in a way that is consistent with
known spatial expression profiles of marker genes (used as anchors)

3. Probabilistic map that assigns each cell a distribution over locations on the
physical space is obtained. Mapping of cell pairs is formulated as optimal

transport problem. )\

Optimal transport: Classic example -
* n mines produce iron ore and n factories use the iron ore ﬂ

« Every mine supplies one factory
e Transport comes at a cost which increases with distance )\
* What is the optimal transport plan with the lowest cost?
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novoSpaRc: Workflow

1. Distances are computed for each pair of cells on graphs for expression
space and physical space

2. Distances of pairs of cells are aligned in a way that is consistent with
known spatial expression profiles of marker genes (used as anchors)

3. Probabilistic map that assigns each cell a distribution over locations on the
physical space is obtained. Mapping of cell pairs is formulated as optimal

)

transport problem.

Optimal transport: Classic example -
* n mines produce iron ore and n factories use the iron ore
« Every mine supplies one factory

e Transport comes at a cost which increases with distance
* What is the optimal transport plan with the lowest cost?
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Reconstruction of symmetrical tissues: Intestinal epithelium

Hypothesis: distances in expression state and physical space
correspond to each other
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Reconstruction of symmetrical tissues: Intestinal epithelium

In intestinal epithelium, cells have previously been classified into 7
distinct expression zones (Crypt, V1, V2 ... V6)
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Reconstruction of symmetrical tissues: Liver lobule
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Reconstruction of symmetrical tissues: Liver lobule
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Reconstruction of a stage 5 Drosophila embryo

* In stage 5 of development, Drosophila embryos consist of ~6000 cells

« The expression levels of 84 TF have been quantitively registered using
FISH (Berkeley Drosophila Transcription Network Project, BDTNP)

 SCRNA-seq data was obtained from the BDTNP dataset

» Tissue reconstruction was performed 1. de novo and 2. with use of
marker genes as reference

e Again, monotonic relationship between expression and spatial distance
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Reconstruction results compared to FISH data
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Reconstruction results for 4 TF and individual cells, using 0-2 marker genes
as reference, compared to FISH data (top)

2 marker genes are sufficient to create accurate reconstructions



Reconstruction of mouse cerebellar slice
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Meg3

Neurod1 ®

Reconstruction of mouse cerebellar slice

Meg3: maternally-
expressed gene 3

Nefl: neurofil. light chain

Neurodl: neuronal
differentiation 1

Mbp: myelin basic
protein




Gene expression cartography: Summary

» Diverse biological tissues can be reconstructed from existing scCRNA-seq
datasets based on a simple hypothesis: There is a structural
correspondence between the distances between cells in expression space
and in physical space

* Anchoring with known marker genes improves the reconstruction — if not,
the reconstr. is subject to global transformations (e.g. mirroring)

* Previously unknown spatially informative genes could be identified (e.g.
long non-coding RNAS, transcription factors)

» Can the method handle tissue surfaces in more complex tissues?
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Background

 In spatial transcriptomics, determining zonation of small cells with low
MRNA content or without highly expressed landmark genes remains
challenging

* In the liver, hepatocytes and diverse non-parenchymal cells (NPCs) are
arranged in lobules — repeating, hexagonal units

» Lobules are composed of a central vein, radial sinusoidal networks and
portal nodes (arteries, veins and bile ducts)

* Lobule blood vessels are lined with liver endothelial cells (LECs)



. Central vein
Liver lobule

Liver lobule
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The lobule microenvironment gives rise to spatial division of labour among
hepatocytes, depending on radial coordinates

It is unknown whether liver non-parenchymal cells exhibit similar spatial
division of labour



Liver lobule
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Hepatocytes

» Liver endothelial cells (LECs) make up about 50% of liver NPCs

« Form building blocks of blood vessels, clear endotoxins and bacteria, regulate
Immune responses, present antigens, secrete morphogens that shape
hepatocyte gene expression

« LECs at different lobule radial coordinates are known to posess morphological
differences, but their gene expression hasn’t been characterised



Overview

* A previous study used scRNA-seq and FISH to construct a panel of hepatocyte
landmark genes, which differed according to radial coordinates (Halpern et al.,
Nature 2017)

 ScRNA-seq of LECs is challenging, given their small size - transcripts of most
genes won't be present in individual LECs

« LEC zonation pattern is unknown - no reference available for mapping

Sequence RNA of hepatocyte-LEC pairs - characterise gene
expression of hepatocytes (known transcriptional profile) and LECs that
are attached to them in the tissue

- Resolution of LEC zonation pattern



Paired-cell sorting and sequencing

» Liver tissue was dissociated with collagenase D, which is less efficient than
other tissue dissociation enzymes (e.g. Liberase) - cell pairs could be
retained

 FACS: gating for hepatocytes (based on size) and CD31+ (endothelium) -
hepatocyte-LEC doublets



Removal of hepatocyte clusters
Paired-cell sorting and sequencing

Retention of hepatocyte-
LEC doublets
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Filtering paired RNA sequencing data

Removal of non-target events
» Filtering out of wells that didn’t contain markers of both cell types

Selection of ligand-receptor gene pairs that are known to be zonated
1. Rspo3, Wnt9b: pericentral
2. Efnb2, DIl4: periportal

« Pairs with pericentral or periportal genes also showed matching enrichment /
depletion of pericentral / periportal hepatocyte transcripts - very few artifactual

pairs
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Anatomical reconstruction

Zonation

« Pairs were assigned a scaled radial coordinate (1-8), based on ratio of summed
expression of 21 pericentral and 30 periportal hepatocyte landmark genes
(previously identified)

—+

G Cyp2at Cyperai Cypiaz igft Acly
6 2 25 12 15
12 - 11
- 4 15} 1 ”
E 1! 1ET 0.9 1
E 2 ael it 08
£ | 0.5 0.5
T 0 oegp, , 0 0* =L 07
5 12345874 1i234E67EH 123 4EETE 12346874 12345874 12346ETEH
i
a Uipriat Hamp Ipitp2 Argi Cypaz Al
= 14 16L 25 1.5
5 : 1.2} :
o 16| 2
g 1.2 i1}
5 1t o8 | 15 1
w1 T T 1
0.4
08 05 0.6 e 0.5 05
12345678 12345678 12345678 12346674 12345678 123466878
= W =TFISH
LEI'D'LIEH.}'ET -FIIIF'H.‘:'.EEEI

Landmark genes with high expression and low inter-mouse variability



Anatomical reconstruction

Endothelial genes
* Focus on genes that are strongly expressed in endothelium, relative to

hepatocytes

» Exclusion of genes that are zonated in hepatocytes (otherwise, zonation of
endothelium might falsely be attributable to hepatocyte transcripts)

 Removal of immune cell genes

» Selection of endothelial genes that were differentially expressed, according to
zonation

- 1303 LEC-specific genes, 475 of which were zonated (35%)



Zonated LEC-specific genes
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FISH of LEC-specific genes
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Characteristics of zonated LECs

» Pericentral LECs express Wnt2, Wnt9b and Rspo3, which are known to be
essential for maintenance of hepatocyte zonation

» Discovery of more pericentral LEC markers: Thbd, Cdh13, Fabp4, Kit (can be
used as sorting markers)

» Differentially expressed in central vein LECs (Wnt21) and sinusoidal LECs
(Wnt2 1 1) -2 finer classification of LECs

» Genes repressed in pericentral LECs: Bmp2, Stabl

Thbd: Thrombomodulin

Cdh13: Cadherin 13

Fabp4: fatty acid binding protein 4
Bmp2: Bone morphogenetic protein 2
Stabl: Stabilin 1



FACS sort based on Kit (Cd117) expression
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Paired-cell sequencing: Summary

Development of paired-cell sequencing: spatial information is extracted from
endothelial cells, based on spatial information of attached parenchymal cells
—> reconstruction of location within lobule

Liver endothelial cells (LECs) showed spatial transcriptomic heterogeneity,
based on location along lobule radial axis

Uncovered molecular signature of pericentral LECs

Zonated expression of markers (here: Kit) allows sorting of specific LEC
subsets

Paired-cell sequencing could be applied to many more tissues, tumours etc.

Limitations

Hepatocytes are often adjacent to more than one type of LEC (arterial,
venous, sinusoidal) = could not be distinguished

In FISH, different types of endothelium showed different expression of Rspo3,
Wnt etc.



Thank you for your attention
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