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Live
Attenuated
(LAV)

Tuberculosis

Oral polio
vaccine (OPV)

Measles
Rotavirus

Yellow fever

A weakened form of the germ.
Pros
Strong and long-lasting immune response.

Just 1 or 2 doses of most live vaccines give a lifetime of protection.

Cons

Potential harmful to people with weakened immune systems, long-term health

problems, or who've had an organ transplant.
Storage conditions limitations: stay cool.

vaccines.gov



Inactivated
(Killed
Antigen)

Whole-cell
pertussis (wWP)

Inactivated
polio virus
(IPV)

The killed version of the germ.
Cons
Induced immunity is not as strong as live vaccines.

Several doses over time (booster shots) in order to get ongoing immunity

Pros
Safe...

vaccines.gov



Subunit
(Purified
Antigen)

Acellular
pertussis (aP)

Haemophilius
influenzae

type B (Hib)

Pneumococcal

(PCV-7, PCV-10,

PCV-13)

Hepatitis B
(HepB)

Subunit, recombinant, polysaccharide, and conjugate vaccines: specific

pieces of the germ — like its protein, sugar, or capsid
Pros
Strong immune response targeted to key parts of the germ.
Broad application: anyone who needs them.
Cons
Need booster shots to get ongoing protection.

vaccines.gov



Toxoid
(Inactivated
Toxins)
e Atoxin (harmful product) made by the germ.
Pros
« Immunity to the parts of the germ (toxin) that cause a disease instead of the
T i tanus germ itself.

toxoid (TT) Cons | |
* Need booster shots to get ongoing protection.

Diptheria
toxoid

vaccines.gov



Newly developed and promising

sequence the genome of a viral pathogen to determine the code for a good antigen.
RNA-Based l

Purify the mRNA and formulate it as a vaccine.

Non- l
replicating

: MRNA translation into antigen in vivo.
In vivo self-

replicating

In vivo
dendritic cell
non-replicating

RNA VS DNA

= Do not need to enter the nucleus to express the antigen.

= Avoid the risk of integration of targeted sequence into host cells.

Lubrizol life science health
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Self-Amplifying RNA

Synthetic mRNA
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sa-RNA Achieves Equivalent Protection to mRNA but
Requires Less RNA

Vaccine procedure:

BALB/c mice

i.m with synthetic mRNA encoding HA from H1N1/PRS8
prime-boost regimen: 120, 80, 20ug

Inactivated virus as positive control

Immune response assessment:
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sa-RNA Achieves Equivalent Protection to mMRNA but
Requires Less RNA
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sa-RNA Achieves Equivalent Protection to mRNA but
Requires Less RNA

Sa-RNA expressing HIN1/PR8 HA antigen
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Vaccination induced anti-H1N1/PR8 functional antibody response;
1.25ug dose gave significant response and also full protection;
0.25ug and 0.05ug were partially protected.



sa-RNA Achieves Equivalent Protection to mRNA but
Requires Less RNA

Table 1. Comparison of Responses by Different RNA Platforms

mRNA sa-RNA
Dose 120 pg 80 ng 20 pg 1.25 ng 0.25 png 0.05 ng
HAI (mean + SD) 284 £ 325.7 88 + 65.73 56.4 £ 66.52 104 £ 53.67 18.2 + 14.53 42.4 + 67.66
VNT (mean + SD) 688 + 581.3 140 £+ 107.7 156.2 £ 152.3 576 + 267.7 149 + 189.6 288 + 556.5
Weight d3 p.i. 96.7 £ 6.7 97.6 £ 2.0 934 5.3 93429 87.6 £ 4.3 90.3 £ 5.6

HALI, hemagglutination inhibition assay titer; p.i., post-infection; VNT, viral neutralizing titer.

64-fold lower dose of sa-RNA than synthetic mRNA was required to give an equivalent protective

response



sa-RNA Gives Extended Expression Compared to mRNA

Sa-RNA encoding firefly luciferase genes and visualized with IVIS spectrum in vivo imaging system after
intraperitoneally injection of D-luciferin.
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Delayed luciferase expression from sa-RNA, peaking 8 days after mRNA, 5-fold higher peak, 10 days lasting
above mRNA.



Current formulation and delivery technologies for mRNA vaccines

C. Zeng et al. 2020

Delivery Advantages Challenges Readiness
format for human®
Lipid-based * Protect mRNA from RNase + Potential side effects Clinical
nanoparticles degradation trials
« Efficient intracellular
delivery of mRNA
« High reproducibility
* Easy to scale up
Polymer-based * Protect mRNA from RNase * Potential side effects Preclinical
nanoparticles degradation * Polydispersity mouse
« Efficient intracellular model
delivery of mRNA
Protamine * Protect mRNA from RNase * Low delivery Clinical
degradation efficiency trials
* Protamine-mRNA complex * mRNA complexed
has adjuvant activity with protamine is
translated poorly
Other peptides * Protect mRNA from RNase * Low delivery Preclinical
degradation efficiency mouse
* Peptides offer many model

functions to be exploited




Delivery formulation improves Sa- RNA efficacy
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sa-RNA Vaccine Encoding Influenza A Virus HA
Protects against Current Seasonal Influenza Strains
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Trivalent RNA Vaccine
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“single shot” immunity?
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A single shot of sa-RNA or DNA encoding HA protects against HIN1 influenza disease, affording protection
against weight loss and a significant reduction in viral load.



Current challenges in RNA vaccine design

* Increase RNA stability
* Nucleoside modifications

* Protein production
* Self-amplifying RNA

* Improve delivery
* Lipidic, polymeric nanoparticle delivery

Zhou X. PNAS. 1995:92:3009-13
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self-amplifying RNA (saRNA) trans-amplifying RNA (taRNA)

Single vector system, Split vector system,
In cis acting replicase In trans acting replicase
5'CSE S§P  3csE 5'CSE SQP  scsE
C— replicase GOl —PpA C— replicase - iTG —PpA
saRNA-GOI saRNA-REPL
trans-replicon-GOI | "~~~ """ T T T T T E IO
(TR-GOI) 5UTR (hAG) 3'UTR (AES-mtRNR1)
C— replicase — pPA
nrRNA-REPL
RNA iIng for gen RNA ing for gen : :
. coding fo JSIS coc;l o B genls RNA coding for replicase
of interest & replicase of interest

Optimized for stability and translational efficiency:

* Beta-s-ARCA(D2) cap increasing protein expression for mRNA.
« The human alpha-globin 5" UTR, a 3" UTR representing a fusion of motifs derived from amino-terminal

enhancer of split (AES) mRNA and mitochondrially encoded 12S rRNA (mtRNR1).
* An unmasked poly(A) tail.



Expression levels of luciferase(reporter) by three different RNA vectors
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Expression levels achieved by taRNA driven by nrRNA-
REPL were comparable to those of the saRNA single
vectorsystem.
In contrast, expression levels achieved by taRNA in
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All three systems resulted in reduction of cell viability
starting at 24 h after electroporation



Why nrRNA is superior to saRNA in complementing the taRNA split-vector system?

5'CSE S§P  scsE
C— replicase H iTG —PpA
saRNA-REPL
5UTR (hAG) 3'UTR (AES-mtRNR1)
C— replicase — pA
nrRNA-REPL

To investigate whether the translation efficiency of the replicase ORF depends on the vector backbone, they

introduced 2 essential controls:

* One control entailed quantifying replicase expression in transfected cells in a model without RNA replication;
they used a replicase mutant (mut-REPL), which is deficient in polymerase activity. This enabled the analysis
of replicase translation from exclusively in vitro transcribed and transfected RNA molecules and neutralized de
novo saRNA synthesis as a confounding factor.

» A saRNA variant with a mutant SGP and full deletion of the transgene ORF (saRNA-REPL AiTG) to control for
the possibility that the large “unused” second ORF (iTG) downstream of the SGP in saRNA-REPL may impair
expression from this construct.
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« The amount of replicase protein generated in cells transfected with nrRNA-REPL was the same for
wild-type (WT)-and mut-REPL, indicating that the mutation did not affect protein stability.

« Expression of mutant replicase was higher with saRNA lacking the ITG as compared to saRNA
encoding an ITG, indicating that nonsense-mediated mMRNA decay would affect replicase levels.
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» Assess the expression of a co-transfected nrRNA coding for luciferase (nrRNA-LUC) in the presence of
either the saRNA or the taRNA split-vector systems.

» Generate a stably transduced BHK-21 cell line expressing destabilized luciferase (Luc2CP) and measured
Luc2CP levels in response to saRNA or taRNA transfection.

« The translation of co-transfected nrRNA-LUC was unaffected by taRNA in conjunction with nrRNA-REPL but
strongly inhibited when cotransfected with saRNA-REPL or saRNA-REPL-AITG.

* The use of both saRNA versions with WT replicase reduced promoter-driven expression of Luc2CP within 3 h
and at a much greater extent than taRNA replication driven by nfRNA-REPL.

These data suggested that saRNA replication rather than TR-replication impaired cellular translation.
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o 3’ Poly-A-tail: properties such as
length, are important for

o UTR’s: translational efficiency is
regulated by their length,
structures and regulatory

elements.

translation and protection of the
mRNA molecule

/. Cap

5’ Cap: The efficiency of
capping and the cap
structure impact innate
sensing and protein
production.

CDS (Coding Sequence):
Modification of sequence, such as
codon optimization, have
contributed to improved expression.

Purity: removal of impurities reduces
innate sensing promoting expression.

npj Vaccines (2020) 11



Simplify trans-replicon without Compromising the Immunogenicity of the taRNA
Split-Vector Vaccine
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Summary

Avoid the risk incurred with sa-RNA that are engineered to express budding-
competent viral glycoproteins which would transfer into new host cells.

Uncoupled antigen and replicase sequence could be optimized independently.

Dose efficiency, shorter RNA sequence to produce.
Omitting in vitro capping and shortening poly(A) tails of the TR.
Invariable component could be pre-produced at large scale and stored.



Summary

* The requirement to manufacture two RNA drugs.

* The complexity for efficiently in vivo delivery of both components into the
same cell.



Summary

based on new mRNA technology for the
current approach:



A DNA Plasmid-Based Self-Amplifying RNA

Positive-sense saRNA

Negative-sense saRNA
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C In Vitro Transcribed saRNA

Positive-sense saRNA Negative-sense saRNA mRNA (transgene)
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D NTR-Flanked Trans-Amplifying RNA (taRNA)
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Vaccine platforms for the COVID-19

Live-attenuated vaccine Whole inactivated Vaccine || Replicating/non-replicating Virus-like particles PR A e Recombinant subunit
viral vector vaccine Vaccine Vaccine

& Sinovac, Dedjing Institute of : |
ex: Codagenix Biological Products and Wuhan instiute ex: Atimmune ex: GeoVax—BravoVax
of Blological Products | ex: CureVac ex: Clover Biopharmaceuticals
slpr;ﬂﬂn: Cee 5 proven
Platsrm: Constnss & 2019000V 5 pholeen
Platform: Adenovinus based NasoVAX, cxpressing Platiorm: Modéfied Vaccing Ankan combined Platform: mANA based vaccing dgaingt subunit-trimer vaocing (5 Trimer) uilizing thier
platicem: Decplimized live ablanuated vaccines. platfgere: lrm:w'r..ﬁll“:‘m: by it Foparl, SARS 03 apike protein (Inbranansl vacsing] with Wines Lo Particies (MVA-VLE) COD-19, Trimee Tage technoiogy

Alturki Sana O et al Front. Immunol., 19 August 2020



Thank you for your attention!
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