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Why spatially resolved multiparametric single cell analysis?

 Multiparametric single cell analysis uncovers the heterogeneity of cellular phenotypes and functional states within 

population based measurements

 Each cellular phenotype is defined  by the interplay of its internal state as well as its environment 

the ability to analyze single cell functional states with spatial resolution will improve the understanding of 

normal tissue function and disease biology





Multi-epitope-ligand cartography (MELC) – Paper 1

The principle of multi-dimensional MELC procedure:

 Multi-dimensional MELC is based on repeating staining, imaging and bleaching steps

 In each cycle the sample is incubated with one or more tags and imaged before bleaching by soft multi-wavelenght

excitation (e.g. 485nm for FITC and 546nm for PE)

 Construction of co-localization maps and toponome maps



Multi-epitope-ligand cartography (MELC) – Paper 1

Construction of toponome maps:



Multi-epitope-ligand cartography (MELC) – Paper 1

Construction of toponome maps:

 MELC data generates a list of the epitopes present at each pixel

 List can be based on fluorescence intensity (b) or on a binarized data set (c)

 Binarization requires the introduction of an appropriate threshold value for each epitope

 Binarized data set can be translated into combinatorial molecular phenotypes (CMPs) 

 Some CMPs denote functional regions and were defined as CMP motifs



Multi-epitope-ligand cartography (MELC) – Paper 1

Construction of toponome maps:

 Assignment of one color for each CMP motif can summarize protein organization in a 2D or 3D toponome map



Multi-epitope-ligand cartography (MELC) – Paper 1

Test for signal separation and comparison to direct immunofluorescence microscopy:

 Staining with 6 molecular markers specific for cytoplasmic or nuclear structures

 Binarized data recapitulates established results



Multi-epitope-ligand cartography (MELC) – Paper 1

Does the staining order affect the result?

 Staining of PBMCs with 18 cell surface markers including a inverted labeling 

order of the antibody and a randomly permuted order

 CMPs are not significantly affected by the order



Multi-epitope-ligand cartography (MELC) – Paper 1

Protein organization in model diseases:

 Location of 48 proteins in situ in patients with psoriasis (b, e) , atopic dermatitis and healthy controls (a)

 Levels were general similar for psoriasis and atopic dermatitis compared to the control (c) 



Multi-epitope-ligand cartography (MELC) – Paper 1

Protein organization in model diseases:

 Location of 48 proteins in situ in patients with psoriasis (b, e) , atopic dermatitis and healthy controls (a) 

 Identification of disease-specific CMPs as e.g. CMP motif I:

CD29-/CD36+/CD58+/CD138+/HLA-DR+/pan-CK

 denotes keratinocytes from the upper epidermis and is a possible hallmark of the hyperactivated suprabasal

keratinocyte islands



Multi-epitope-ligand cartography (MELC) – Paper 1

Protein organization in experimental pathology:

 Investigation of protein alternations using the CCI (chronic constriction injury) model in rats

 Procedure is thought to modulate interneuronal synapses

 CMP motif 1 (yellow) characteristic for healthy control (a) is lost due to chronic neuropathic pain in the CCI model (b)

 CMP motif 2 (red) only detected in the CCI model 
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CMP motif 1
• Lead proteins: GRIP-1, CT and 

GluR2/3

CMP motif 2
• Lead proteins: PSD-95, NR2A
• Restricted to single dendritic 

structures on the treated side



Multi-epitope-ligand cartography (MELC) – Paper 1

Identification of functional protein networks:

 Investigation of 23 cell surface proteins in a muscle tumor cell line TE671 

 4 CMPs were present while forming the exploratory state

 common lead protein of all 4 CMPs was the alanine-specific protease APN (CD13)

 Alanine-specific protease activity in the exploratory state as indicated by the breakdown of the fluorogenic substrate 

bis-ala-rhodamine 110 (b), correlates with the distribution of APN (d) 
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Identification of functional protein networks:

 Investigation of 23 cell surface proteins in a muscle tumor cell line TE671 

 4 CMPs were present while forming the exploratory state

 common lead protein of all 4 CMPs was the alanine-specific protease APN (CD13)

 Alanine-specific protease activity in the exploratory state as indicated by the breakdown of the fluorogenic substrate 

bis-ala-rhodamine 110 (b), correlates with the distribution of APN (d) 

 Treatment with a APN specific inhibitor blocked the ability of the cells to transform into the exploratory state (e, f)



Multi-epitope-ligand cartography (MELC) – Paper 1

Identification of functional protein networks:

 Investigation of 23 cell surface proteins in the rhabdomyosarcoma cell line TE671 

 4 CMPs were present while forming the explorative state

 common lead protein of all 4 CMPs was the alanine-specific protease APN (CD13)

 Average fluorescence intensity of the 23 markers showed only little differences between the spherical and explorative 

state 



Multi-epitope-ligand cartography (MELC) – Paper 1

Summary:

 multidimensional fluorescence imaging technology with functional resolution 

 Allows the colocalization and detection of a large number of proteins

 Identifies transient or rare protein associations in 3D

 CMPs include weakly or transient interacting proteins

 Is able to reconstruct the dynamics of molecular networks

 Shows how protein associations are altered by pathology and disease





Imaging mass cytometry (IMC) – Paper 2

The workflow of imaging mass cytometry:

 Preprocessing using routine immunohistochemistry protocols

 Laser beam of 1µm in diameter and 3.5J/cm2 laser fluence used at a frequency of 20Hz

 Ablated sample aerosol gets directly transported to the CyTOF by argon and helium gas flow

 Single isotope signals are plotted using coordinates of each single laser shot

 Cell features are computationally segmented using the watershed algorithm



Imaging mass cytometry (IMC) – Paper 2

Validation of the approach using IHC:

 Comparison of metal-labeled and unlabeled antibodies in IFM 

using formalin-fixed paraffin-embedded breast cancer samples (a)

nuclei: H3 and PR (not shown)

plasma membrane: HER2, Cytokeratin 8/18, E-Cadherin

stromal compartment: vitamin

 Investigation whether images generated by IMC are able to 

reproduce results obtained by IFM on luminal HER2+ breast 

cancer samples (b)

 IMC is able to recapitulate IFM results with similar 

percentages of tumor cells expressing the analyzed markers

IFM IMC

H3 100% 100%

HER2 75% 79%

Cytokeratin 8/18 63% 66%



Imaging mass cytometry (IMC) – Paper 2

Analysis of tumor heterogeneity in breast cancer:

 in breast cancer, the expression of HER2,  estrogen 

receptor (ER) and PR are used to define the main 

subtypes:

luminal HER2-
luminal HER2+
HER2+
Tripel negative

 Identification of cell subpopulation phenotypes using the 

IMC multiplexed measurements of 32 markers on 21 

previously classified breast cancer samples by SPADE 

(spanning-tree progression analysis of density-

normalized events) analysis (a)

 Detection of breast cancer heterogeneity within and 

between the subtypes (c-i)



Imaging mass cytometry (IMC) – Paper 2

Summary:

 New method combining CyTOF with immunohistochemistry techniques resulting in spatially resolved multiplexed 

single cell analysis 

 Advantages:

no sample autofluorescence

no matrix effects as seen for MALDI

no amplification step of the signal needed

 appropriate standards will enable the absolute quantification of cellular markers

 Current limitations are availability of antibodies, sampling time and resolution





Histology topography cytometry analysis toolbox (histoCAT) – Paper 3

 need of new computational approaches to enable 

comprehensive, quantitative and interactive exploration of all 

levels of information 

 histoCAT combines intuitive high dimensional image 

visualization and novel algorithms for the comprehensive 

study of cell-cell interactions and the social networks of cells

 use of “Round-Trip” analysis



Analysis example:

 Performance of IMC on 49 diverse breast cancer samples, 3 matched normal 

tissue samples and 6 additional healthy breast tissue samples 

 Antibody panel contained markers for the identification of

cell lineages apoptosis
signal pathway activation clinical markers
proliferation

 To gain a tissue-wide overview of cell phenotypes present in a given image set, 

two approaches have been incorporated into histoCAT 

Histology topography cytometry analysis toolbox (histoCAT) – Paper 3

First approach is a supervised and based on tSNE

-> grouping similar cells, distinct colors distinguish cells from each source image 

Second approach is based on the unsupervised clustering algorithm PhenoGraph

-> defines complex cell phenotypes based on marker expression and enables 

labeling of cell phenotype clusters on a tSNE plot or displays phenotypes as 

heatmaps taking into account the expression level 



Histology topography cytometry analysis toolbox (histoCAT) – Paper 3

Analysis example:

 Marker intensities and cell populations can be linked back to their 

source images (d and e)

 Visualization by pseudocolors (f) or heatmap (g)

 Specific phenotype clusters can be selected for further analysis; 

e.g. PC7 with high CD68 expression for a deeper understanding of 

tumor-associated macrophages (TAMs) (g,h and j)

 histoCAT has two neighborhood functions that enable the 

investigation of the microenvironment as well 

• User guided, selection of cells touching or proximal to the 

cell population of interest (i and j)

 downstream analysis revealed that distinct proliferative 

(Ki-67+, phospho-S6+) and hypoxic (carbonic anhydrase IX+) 

tumor cells neighbor CD68+ cells



Histology topography cytometry analysis toolbox (histoCAT) – Paper 3

Analysis example:

 histoCAT has two neighborhood functions enabled that enable the 

investigation of the microenvironment as well 

• User guided, selection of cells touching or proximal to the 

cell population of interest

 downstream analysis revealed that distinct proliferative 

(Ki-67+, phospho-S6+) and hypoxic (carbonic anhydrase IX+) 

tumor cells neighbor CD68+ cells

• Unbiased and systematic study of cell-cell interactions using a 

permutation test to compare the number of interactions 

between all cell types in a given image to that of a matched 

control (a-c)



Histology topography cytometry analysis toolbox (histoCAT) – Paper 3

Analysis example:

 histoCAT has two neighborhood functions enabled that enable the 

investigation of the microenvironment as well 

• User guided, selection of cells touching or proximal to the 

cell population of interest

 downstream analysis revealed that distinct proliferative 

(Ki-67+, phospho-S6+) and hypoxic (carbonic anhydrase IX+) 

tumor cells neighbor CD68+ cells

• Unbiased and systematic study of cell-cell interactions using a 

permutation test to compare the number of interactions 

between all cell types in a given image to that of a matched 

control (a-c)

 identification of cellular landscapes and social networks 



Histology topography cytometry analysis toolbox (histoCAT) – Paper 3

Summary:

 histoCAT combines intuitive high dimensional image visualization and novel algorithms for the comprehensive study 

of cell-cell interactions and the social networks of cells

 quantitative and systematic analysis of cell-cell interactions

 identification of defined groups with similar organization, revealing pathology-grade-associated 

cellular ecosystems that may distinguish unique disease states

 toolbox  with a variety of different visualization options

 detailed user guide provided in the supplementary data



Thank you for your attention!

Questions?



Additional formats of cycling immunofluorescence methods



Additional formats of cycling immunofluorescence methods



Imaging mass cytometry (IMC) – Paper 2

Watershed algorithm:

 Which pixel belongs to each object?

 Separating objects from the background or from each other

 grayscale image visualized as topological surface:

bright areas = high (white corresponds to watershed lines)

dark areas = low; catchment basins



Imaging mass cytometry (IMC) – Paper 2

SPADE = spanning-tree 
progression analysis of 
density-normalized events 



Histology topography cytometry analysis toolbox (histoCAT) – Paper 3

 viSNE plots individual cells in a visual similar to a scatter plot, while using 

all pairwise distances in high dimension to determine each cell’s location 

in the plot

 viSNE finds the two dimensional representation of single-cell data that 

best preserves their local and global geometry

 The resulting viSNE map provides a visual representation of the single-cell 

data that is similar to a biaxial plot, but the positions of cells reflect their 

proximity in high-dimensional rather than two-dimensional space


