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= Multiparametric single cell analysis uncovers the heterogeneity of cellular phenotypes and functional states within

Why spatially resolved multiparametric single cell analysis?

population based measurements

= Each cellular phenotype is defined by the interplay of its internal state as well as its environment

the ability to analyze single cell functional states with spatial resolution will improve the understanding of

normal tissue function and disease biology

Image visualization
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iMultizepitope:-ligand cartography (MELC) — Paper 1

The principle of multi-dimensional MELC procedure:

= Multi-dimensional MELC is based on repeating staining, imaging and bleaching steps

= In each cycle the sample is incubated with one or more tags and imaged before bleaching by soft multi-wavelenght

excitation (e.g. 485nm for FITC and 546nm for PE)

= Construction of co-localization maps and toponome maps

Incubation

@t Imaging

Phase contrast

Soft-Bleaching ~ Epitope 1

Skin x20
s Epitope 2
Epitope 3
Epitope 4
i ’?@«- )

Toponome ;nap Colocation map \ Epitope n




Cell 1

Phase Protein 1 Protein 2 Protein 3 Protein 4 Protein 5 Protein 6

Construction of toponome maps:

® B BN

CMPs

CD4 CD3 CD45RA CD62L CD71 CD2
b Protein C I Protei
2 3 4 5 6 1 2 3 4 5 6
255 1255 1198 1234 1121 0 1 1 1 1 0
255 1122 1224 | 90 | 58 1]l]1]loli1]lo]o
255 (210 [ 206 | 152 | 86 e 1 1 1 1 0 0
255 | 153 | 249 | 164 | 93 P4 1 1 1 1 1 0
MP * |1l *~1 11 +~10

Tonsil-specific CMP motif

(white)
é Om
v‘Ngv—’\ SmEvgmn DT
[alalalalalalalalelelslatlsla 5

QOO000000OOLOCOTT OO

000000000001000000
000000000011000000
000000000011000000
000000000001000000
000000000001000001
000000010001000000
000000000001000001
[ooo0000700*10*000*]

Common CMPs
< Om

Dsé 8088050885535

0O00000ITT

000000000000001000
000000000001000000
[ 1000000000000010000
| 1000000000010000000
| 1000000000000000010
[ 1000010000000001000
| 1000010000000000000
| 1000000000000000001
000000100000000000

Muscle-specific CMPs
(white)

OC[
m80080§805§c:85585
(66 &6 & & &xn
000000010000000000
000010000000000000
010000100000000000
000000100010000000
000000100000000000
011010101010000000

phy (MELC)

CMP motif

Paper 1




iMultizepitope:-ligand cartography (MELC) — Paper 1

Construction of toponome maps:

= MELC data generates a list of the epitopes present at each pixel

= List can be based on fluorescence intensity (b) or on a binarized data set (c)

= Binarization requires the introduction of an appropriate threshold value for each epitope
= Binarized data set can be translated into combinatorial molecular phenotypes (CMPs)

= Some CMPs denote functional regions and were defined as CMP motifs
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iMultiepitope-ligand cartography (MELC) - Paper 1

Construction of toponome maps:

= Assignment of one color for each CMP motif can summarize protein organization in a 2D or 3D toponome map
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iMultizepitope:-ligand cartography (MELC) — Paper 1

Test for signal separation and comparison to direct immunofluorescence microscopy:

= Staining with 6 molecular markers specific for cytoplasmic or nuclear structures

= Binarized data recapitulates established results
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iMultiepitope-ligand cartography (MELC) - Paper 1

Does the staining order affect the result?

= Staining of PBMCs with 18 cell surface markers including a inverted labeling

order of the antibody and a randomly permuted order

= CMPs are not significantly affected by the order
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iMultiepitope-ligand cartography (MELC) - Paper 1

Protein organization in model diseases:

= Location of 48 proteins in situ in patients with psoriasis (b, ), atopic dermatitis and healthy controls (a)

= Levels were general similar for psoriasis and atopic dermatitis compared to the control (c)
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iMultiepitope-ligand cartography (MELC) — Paper1

Protein organization in model diseases:

= Location of 48 proteins in situ in patients with psoriasis (b, ), atopic dermatitis and healthy controls (a)
= |dentification of disease-specific CMPs as e.g. CMP motif I:
CD29-/CD36+/CD58+/CD138+/HLA-DR+/pan-CK

- denotes keratinocytes from the upper epidermis and is a possible hallmark of the hyperactivated suprabasal

keratinocyte islands
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iMultiepitope-ligand cartography (MELC) - Paper 1

Protein organization in experimental pathology:

= |nvestigation of protein alternations using the CCl (chronic constriction injury) model in rats

Procedure is thought to modulate interneuronal synapses

» CMP motif 1 (yellow) characteristic for healthy control (a) is lost due to chronic neuropathic pain in the CCl model (b)

» CMP motif 2 (red) only detected in the CClI model
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iMultizepitope:-ligand cartography (MELC) — Paper 1

Identification of functional protein networks:

= Investigation of 23 cell surface proteins in a muscle tumor cell line TE671
= 4 CMPs were present while forming the exploratory state
= common lead protein of all 4 CMPs was the alanine-specific protease APN (CD13)

= Alanine-specific protease activity in the exploratory state as indicated by the breakdown of the fluorogenic substrate

bis-ala-rhodamine 110 (b), correlates with the distribution of APN (d)




iMultizepitope-ligand cartography (M

AELC) — Paper 1

Identification of functional protein networks:

Investigation of 23 cell surface proteins in a muscle tumor cell line TE671
4 CMPs were present while forming the exploratory state
common lead protein of all 4 CMPs was the alanine-specific protease APN (CD13)

Alanine-specific protease activity in the exploratory state as indicated by the breakdown of the fluorogenic substrate

bis-ala-rhodamine 110 (b), correlates with the distribution of APN (d)

Treatment with a APN specific inhibitor blocked the ability of the cells to transform into the exploratory state (e, f)
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iMultizepitope:-ligand cartography (MELC) — Paper 1

Identification of functional protein networks:

= |nvestigation of 23 cell surface proteins in the rhabdomyosarcoma cell line TE671

= 4 CMPs were present while forming the explorative state

= common lead protein of all 4 CMPs was the alanine-specific protease APN (CD13)

= Average fluorescence intensity of the 23 markers showed only little differences between the spherical and explorative

state
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iMultiepitope-ligand cartography (MELC) - Paper 1

Summary:

multidimensional fluorescence imaging technology with functional resolution
= Allows the colocalization and detection of a large number of proteins

= |dentifies transient or rare protein associations in 3D

=  CMPs include weakly or transient interacting proteins

= s able to reconstruct the dynamics of molecular networks

= Shows how protein associations are altered by pathology and disease
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Highly multiplexed imaging of tumor tissues with
subcellular resolution by mass cytometry
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Imaging mass cytometry (IMC) - Paper 2

The workflow of imaging mass cytometry:

Preprocessing using routine immunohistochemistry protocols

= Laser beam of 1um in diameter and 3.5J/cm?laser fluence used at a frequency of 20Hz

= Ablated sample aerosol gets directly transported to the CyTOF by argon and helium gas flow
= Single isotope signals are plotted using coordinates of each single laser shot

= Cell features are computationally segmented using the watershed algorithm

4 j uv CyTOF mass
\\ Lo laser cytometer
‘rﬁ“ \ o
e ) T
=t \ e
Tissue or cell-line Marker staining with Laser ablation coupled
preprocessing metal-labeled antibodies to mass cytometry

Downstream data analysis Single-cell segmentation Data preprocessing Signal extraction of
and image assembly 32 measured markers



Imaging mass cytometry (IMC) - Paper 2

Validation of the approach using IHC:

= Comparison of metal-labeled and unlabeled antibodies in IFM

using formalin-fixed paraffin-embedded breast cancer samples (a)

nuclei: H3 and PR (not shown)
plasma membrane: HER2, Cytokeratin 8/18, E-Cadherin

stromal compartment: vitamin

= |nvestigation whether images generated by IMC are able to
reproduce results obtained by IFM on luminal HER2+ breast

cancer samples (b)

- IMC is able to recapitulate IFM results with similar

percentages of tumor cells expressing the analyzed markers

IFM IMC
H3 100% 100%
HER2 75% 79%

Cytokeratin 8/18 63% 66%

Unlabeled Metal-labeled
antibody, IFM antibody, IFM

HER2 (r)

CK8/18 (1)

E-Cad (r)

Vim (y)

R

Metal-labeled
antibody, IFM

CyTOF imaging
mass cytometry




Imaging mass cytometry (IMC) — Paper 2

Analysis of tumor heterogeneity in breast cancer:

= in breast cancer, the expression of HER2, estrogen

receptor (ER) and PR are used to define the main

subtypes:

luminal HER2-
luminal HER2+
HER2+

Tripel negative

= |dentification of cell subpopulation phenotypes using the
IMC multiplexed measurements of 32 markers on 21
previously classified breast cancer samples by SPADE
(spanning-tree progression analysis of density-

normalized events) analysis (a)

- Detection of breast cancer heterogeneity within and

between the subtypes (c-i)
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— Paper 2 s |

Summary:

=  New method combining CyTOF with immunohistochemistry techniques resulting in spatially resolved multiplexed

single cell analysis

= Advantages:

no sample autofluorescence
no matrix effects as seen for MALDI

no amplification step of the signal needed

= appropriate standards will enable the absolute quantification of cellular markers

= Current limitations are availability of antibodies, sampling time and resolution



histoCAT: analysis of

cell phenotypes and
interactions in multiplex
image cytometry data
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ilistology topography cytometry analysis toolbox (histoCAT) — Paper3

d

= need of new computational approaches to enable

comprehensive, quantitative and interactive exploration of all

levels of information Image visualization

Populations

= histoCAT combines intuitive high dimensional image

visualization and novel algorithms for the comprehensive C | Neighbor analysis and

cell social networks
. . . (@,
study of cell-cell interactions and the social networks of cells ol »
@ Mi i ts
ﬂx'?."’" iIcroenvironmen

= use of “Round-Trip” analysis




ilistology topography cytometry analysis toolbox (histoCAT) - P

Analysis example:

=  Performance of IMC on 49 diverse breast cancer samples, 3 matched normal

tissue samples and 6 additional healthy breast tissue samples

_tSNE2 Q)

= Antibody panel contained markers for the identification of

cell lineages apoptosis
signal pathway activation clinical markers
proliferation

= To gain a tissue-wide overview of cell phenotypes present in a given image set,

All tumors

All phenotypes

_tSNE 2 lon

two approaches have been incorporated into histoCAT

First approach is a supervised and based on tSNE

-> grouping similar cells, distinct colors distinguish cells from each source image

Second approach is based on the unsupervised clustering algorithm PhenoGraph

Phenotype

-> defines complex cell phenotypes based on marker expression and enables
labeling of cell phenotype clusters on a tSNE plot or displays phenotypes as

heatmaps taking into account the expression level
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JHistology topography cytometry analysis toolbox (histoCAT) — Paper3

Analysis example:

Marker intensities and cell populations can be linked back to their d e st celiyoss
source images (d and e) - PR o0 e o7

Visualization by pseudocolors (f) or heatmap (g)

Specific phenotype clusters can be selected for further analysis;
e.g. PC7 with high CD68 expression for a deeper understanding of
tumor-associated macrophages (TAMs) (g,h and j)

histoCAT has two neighborhood functions that enable the

investigation of the microenvironment as well

* User guided, selection of cells touching or proximal to the

Image labeling and neighbor identification

cell population of interest (i and j)

- downstream analysis revealed that distinct proliferative

(Ki-67+, phospho-S6+) and hypoxic (carbonic anhydrase IX+)

tumor cells neighbor CD68+ cells P————



Hlistology topography cytometry analysis toolbox (histoCAT) - Paper3

Analysis example:

= histoCAT has two neighborhood functions enabled that enable the 3

Tissue sample

investigation of the microenvironment as well

e User guided, selection of cells touching or proximal to the

Number of cell—cell Number of cell—cell

cell population of interest Kiacactions Interactions
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JHistology topography cytometry analysis toolbox (histoCAT) — Paper3

Analysis example:

= histoCAT has two neighborhood functions enabled that enable the

investigation of the microenvironment as well
* User guided, selection of cells touching or proximal to the
cell population of interest
- downstream analysis revealed that distinct proliferative
(Ki-67+, phospho-S6+) and hypoxic (carbonic anhydrase IX+)
tumor cells neighbor CD68+ cells
* Unbiased and systematic study of cell-cell interactions using a
permutation test to compare the number of interactions
between all cell types in a given image to that of a matched
control (a-c)

- identification of cellular landscapes and social networks
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iHistology topography cytometry analysis toolbox (histoCAT) — Paper 3

Summary:

= histoCAT combines intuitive high dimensional image visualization and novel algorithms for the comprehensive study
of cell-cell interactions and the social networks of cells

= guantitative and systematic analysis of cell-cell interactions

> identification of defined groups with similar organization, revealing pathology-grade-associated

cellular ecosystems that may distinguish unique disease states

= toolbox with a variety of different visualization options

= detailed user guide provided in the supplementary data






Highly multiplexed single-cell analysis of formalin-
fixed, paraffin-embedded cancer tissue
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Highly multiplexed imaging of single cells using a
high-throughput cyclic immunofluorescence
method

Jia-Ren Lin!, Mohammad Fallahi-Sichani? & Peter K. Sorger'2

OPEN
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Watershed algorithm:

=  Which pixel belongs to each object?
= Separating objects from the background or from each other
= grayscale image visualized as topological surface:
bright areas = high (white corresponds to watershed lines)

dark areas = low; catchment basins

1 1|0 | 0|0 0.00 | 0.00 | 1.00 | 2.00 | 3.00

1 1] 0| 0|0 0.00 | 0.00 | 1.00 |2.00 |3.00
Watershed ridge line
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Catchment basins



imaging mass cytometry (IMC) — Paper 2
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Extracting a cellular hierarchy from high-dimensional

cytometry data with SPADE

Peng Qiu'-?, Erin F Simonds?, Sean C Bendall?, Kenneth D Gibbs Jr?, Robert V Bruggner?, Michael D Linderman?,

Karen Sachs?, Garry P Nolan?® & Sylvia K Plevritis!

SPADE = spanning-tree
progression analysis of
density-normalized events

(ii)

T
~
1

(i) Cytometry data
ot
Density-dependent o |
down-sampling %
St
(i) Down-sampled data
Agglomerative (iii) (iv)

clustering

(iii) Clustering result 2 o0
Minimum spanning
tree construction
Marker 2
(iv) SPADE tree
Up-sampling '
. E W
(v) Colored tree showing Low High

cellular heterogeneity Intensity
ntensi



[Histology topography cytometry analysis toolbox (histoCAT) — Paper3

ARTICLES

nature
biotechnology

VISNE enables visualization of high dimensional
single-cell data and reveals phenotypic heterogeneity
of leukemia

El-ad David Amir!, Kara L Davis3, Michelle D Tadmor!-3, Erin F Simonds2-3, Jacob H Levine!>3,
Sean C Bendall>3, Daniel K Shenfeld!-?, Smita Krishnaswamy!, Garry P Nolan>* & Dana Pe’er!4

= ViSNE plots individual cells in a visual similar to a scatter plot, while using
all pairwise distances in high dimension to determine each cell’s location g
in the plot

= viSNE finds the two dimensional representation of single-cell data that

best preserves their local and global geometry

= The resulting ViSNE map provides a visual representation of the single-cell

data that is similar to a biaxial plot, but the positions of cells reflect their

proximity in high-dimensional rather than two-dimensional space



