#### **Quantitative Trait Locus (QTL) Mapping: Principles and Applications**

Technical Journal Club

**Tingting Liu** 

07-08-2020

#### **Quantitative Trait Locus (QTL) Mapping**





$$LOD(z) = \log_{10} \left\{ \frac{\Pr(\text{data}|\text{QTL at } z, \hat{\mu}_A, \hat{\mu}_B, \hat{\sigma})}{\Pr(\text{data}|\text{no QTL})} \right\}$$

The LOD score measures the strength of the evidence for the presence of a QTL at the location z, compared to there being no segregating QTL in the backcross. Larger LOD scores correspond to greater evidence for the presence of a QTL. The LOD score is calculated at each position of the genome (or, in practice, just every  $0.5 \, \text{cM}$  or so).

Mackay, 2001, Nature Reviews Genetics Broman, 2001, Lab animal

#### The long path from QTL to causative gene



Chromosome information (covers 300-500 genes)

#### **Genetic mapping methods**



#### Shared literature:

#### 1. QTL

Ackermann, 2016, Nature. (Mice) Bargman, 2009, Neuron. (C.elegans) Bargman, 2009, Neuron. (C.elegans)

#### 2. BSA / ceX-QTL

Kruglyak, 2019, Nature Communications (C.elegans)

## Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration

Jeong Woong Lee<sup>1</sup>, Kirk Beebe<sup>2</sup>, Leslie A. Nangle<sup>2</sup>, Jaeseon Jang<sup>1</sup>†, Chantal M. Longo-Guess<sup>1</sup>, Susan A. Cook<sup>1</sup>, Muriel T. Davisson<sup>1</sup>, John P. Sundberg<sup>1</sup>, Paul Schimmel<sup>2</sup> & Susan L. Ackerman<sup>1,3</sup>



#### Purkinje cell loss in sticky mutant mice

m

Merge



#### The sti mutation is identified in the alanyl-tRNA synthetase (Aars) gene



Point mutation in *Aar*s gene predict a cause an Ala to Glu, a residue that is evolutionarily conserved

#### Wild typed *Aars* gene rescues neuronal degeneration in *sti* mutants



#### The sti mutation disrupts Serine-sensitive AlaRS editing



AlaRS functions in amino-acid activation and tRNA aminoacylation.



#### Accumulation of misfolded proteins in sti/sti Purkinje cells





## ANKRD16 prevents neuron loss caused by an editing-defective tRNA synthetase

My-Nuong  $Vo^{1,17}$ , Markus  $Terrey^{2,3,4,5,17}$ , Jeong Woong  $Lee^{5,12}$ , Bappaditya  $Roy^{6,7}$ , James J.  $Moresco^{8,13}$ , Litao  $Sun^1$ , Hongjun  $Fu^{5,14,15}$ , Qi  $Liu^{6,7,9,16}$ , Thomas G.  $Weber^{10}$ , John R. Yates  $III^8$ , Kurt  $Fredrick^{6,7}$ , Paul  $Schimmel^{1,11,18*}$  & Susan L.  $Ackerman^{2,3,4,5,18*}$ 

Trait heterogeneity for Purkinje cell degeneration:

B6. Aars sti/+ (+)

CAST. Aarssti/+ (-)

What's the causal gene for suppressing neuron loss in CAST background alleles?

#### Modifier of sticky (*Msti*) suppresses *Aars*<sup>sti</sup>-mediated neurodegeneration



#### Ankrd16 is the modifier of Aarssti/sti



Primer exon 3



RT-PCR and PCR amplification on candidate genes

Sequencing for causal genes

#### Ankrd16 is the modifier of Aarssti/sti



#### **ANKRD16** interacts with AlaRS and prevents mistranslation



#### Loss of *Ankrd16* in *Aars*<sup>sti/sti</sup> mice causes protein aggregation and neurodegeneration



Ubiquitin- and p62-positive aggregates were observed both in hippocampal pyramidal cells

# Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in *C. elegans* Sensory Behaviors

Patrick T. McGrath,<sup>1</sup> Matthew V. Rockman,<sup>2,3</sup> Manuel Zimmer,<sup>1</sup> Heeun Jang,<sup>1</sup> Evan Z. Macosko,<sup>1</sup> Leonid Kruglyak,<sup>3</sup> and Cornelia I. Bargmann<sup>1,\*</sup>

Neuron, 2009

Trait: behavioral responses to stimulus changes in environmental O<sub>2</sub>/CO<sub>2</sub> Two wild type strains: N2 vs CB4856

Identifying causal genes using a well-established library for Recombinant Inbred Lines (RILs)

Two QTLs: Npr-1 for O<sub>2</sub> preference, CO<sub>2</sub> avoidange Glb-5 for CO<sub>2</sub> preference

#### Recombinant Inbred Lines (RILs) developed by Leonid Kruglyak Lab



The RIL library with annotated genotype information

#### O<sub>2</sub>- and CO<sub>2</sub>-Evoked Responses of Two *C. elegans* Isolates



#### QTL analysis of O<sub>2</sub> and CO<sub>2</sub> responses in two strains using RILs



#### Identification of *npr-1* and *glb-5* for O<sub>2</sub> and CO<sub>2</sub> responses in two strains



*Npr-1*: point mutations in 215 from V to F in CB4856, leading to **high-activity Npr-1 in N2**, **low-activity Npr-1 in CB4856**; *Glb-5*: duplication/insertion of *glb-5* in N2, leading to *truncate of glb-5 in N2*.

#### glb-5 Acts in URX, AQR, and PQR O2-Sensing Neurons



#### **ARTICLE**

https://doi.org/10.1038/s41467-019-10636-9

**OPEN** 

### Fast genetic mapping of complex traits in *C. elegans* using millions of individuals in bulk

Alejandro Burga<sup>1,2,3</sup>, Eyal Ben-David<sup>1,3</sup>, Tzitziki Lemus Vergara<sup>1</sup>, James Boocock <sup>1</sup> & Leonid Kruglyak <sup>1</sup>

Nature Communications, 2019

C. elegans eXtreme Quantitative Trait Locus mapping (ceX-QTL)

#### Implementing bulked eXtreme quantitative trait loci (X-QTL) in *C. elegans*



#### Mapping natural genetic variation in drug resistanc



glc-1 encodes the alpha subunit of a glutamate-gated chloride channel, and has been validated for the causal gene for Abamectin resistance

#### **Coupling X-QTL and worm sorting**



#### **Summary**

- 1. Classical QTL analysis has associated chromosomal regions with traits like anxiety, aggression, drug preference, and learning, but since a well-defined QTL in *Drosophila* or mouse typically covers 300–500 genes, moving from a QTL to the causative mutation is very difficult.
- 2. Whole-genome sequences and inexpensive resequencing greatly improved the resolution of QTL mapping and optimizations would speed up the timeline of QTL especially in mice.
- 3. High-throughput and bulked QTL mapping in small organisms (e.g. *Yeast, C. elegans*) greatly improved the efficiency of QTL mapping.

