In vivo CRISPR Screens Asvin Lakkaraju 02.11.2021 Continious Education on Laboratory Animal Sciences #### **Types of CRISPR Screens** Am J Cancer Res. 2021; 11(4): 1031-1050. #### **Increasing complexity of CRISPR Screens** #### Genetic Interaction maps in mammalian cells #### **MINGLE** #### In vivo screens # **Immunity** #### Resource # In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma Juan Dubrot,^{1,5} Sarah Kate Lane-Reticker,^{1,5} Emily A. Kessler,¹ Austin Ayer,¹ Gargi Mishra,¹ Clara H. Wolfe,¹ Margaret D. Zimmer,¹ Peter P. Du,¹ Animesh Mahapatra,¹ Kyle M. Ockerman,¹ Thomas G.R. Davis,¹ Ian C. Kohnle,¹ Hans W. Pope,¹ Peter M. Allen,¹ Kira E. Olander,¹ Arvin Iracheta-Vellve,¹ John G. Doench,¹ W. Nicholas Haining,^{1,2,3} Kathleen B. Yates,^{1,4,*} and Robert T. Manguso^{1,4,6,*} ¹Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA ²Division of Pediatric Hematology and Oncology, Children's Hospital, Boston, MA, USA ³Merck Research Laboratories, Boston, MA, USA ⁴Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA ⁵These authors contributed equally ⁶Lead contact ^{*}Correspondence: yates@broadinstitute.org (K.B.Y.), rmanguso@broadinstitute.org (R.T.M.) https://doi.org/10.1016/j.immuni.2021.01.001 ### **CRISPR-Cas9 Components: Immune rejection** #### **CRISPR-Cas9 Components: Immune rejection** #### Mice reject the tumor formation Immuno-compromised mice #### Rejection is independent of antibiotic gene #### Is Cas9 Immunogenic? NetMHcpan: Prediction software for the MHC class 1 binding peptides #### Cas9 peptides induce immune response #### Cas9 peptides induce memory of immune response #### **SCAR** lentiviral vector system #### SCAR lentiviral vector system efficients dowregulates genes #### SCAR lentiviral vector system overcomes immune response against Cas9 #### **SCAR** prevents activation of Immune response cells #### In vivo screen #### Hits: - 1. sgRNA enrichment: Genes that upon knock down enhance tumor growth (Tumor suppressors) - 2. sgRNA depletion: Genes whose depletion result in tumor cell mortality / Tumor promoters #### Volcano Plot of the differentially enriched sgRNAs Genes whose sgRNA are depleted: Antigen presenting fctors, Atg5 and B2M #### Role of Autophagy in tumor progression In the absence of Atg5, NK cells proliferate #### Role of Autophagy in tumor progression #### Ligands and products of NK cells get activated in the absence of Atg5 In the absence of Atg5, cells are more sensitive to apoptosis by IFN gamma. #### Role of B2M in tumor progression #### **Summary** - 1. Immune rejection associated with Cas9 can be solved using SCAR system. - 2. Identified new targets to target diseases. #### Questions: - 1. Reproducibility of the screens in different Mice? - 2. What about the stage of the tumors? #### ARTICLE https://doi.org/10.1038/s41467-021-23316-4 **OPEN** In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy Meiou Dai¹, Gang Yan¹, Ni Wang¹, Girija Daliah o ¹, Ashlin M. Edick o ², Sophie Poulet ¹, Julien Boudreault ¹, Suhad Ali¹, Sergio A. Burgos o ^{2,3} & Jean-Jacques Lebrun o ^{1⊠} In vivo genome-wide CRISPR knockout screen in TNBC - #### Quality control of the screen #### Hits in the screen #### Pathway analysis on the screen hits ## mTOR pathway Genes in the mTOR pathway in the screen Genetic alterations of the 9 combined TOR hits in 3953 patients # Characterization of mTORC2 and GATOR2 function on TNBC tumor growth. #### **CRISPR** activation of targeted hits proteins. ## Characterization of Hippo pathway on TNBC tumor growth. #### Characterization of Hippo pathway on TNBC tumor growth. #### CRISPR activation of HIPPO pathway leads to reduction in tumor size #### Synergistic activity of drugs tageting mTOR and Hippo pathway on TNBC Annexin V -FITC #### Mechanism of how the drugs work #### The combo therapy is efficient in Patient derived xenografts # The combo therapy leads to depletion of proliferating cells in Patient derived xenografts #### **Summary** - 1. New therapeutic targets can be identified using CRISPR screens. - 2. New pathways involved in TNBC proliferation are identified:mTOR and Hippo pathways - 3. Drugs targeting the pathways can be used as a therapeutic option #### Questions: - 1. Are the identified pathways universal? - 2. Do we need to move towards custom sgRNA screens for the patients to identified suitable therapy?