In vivo CRISPR Screens

Asvin Lakkaraju 02.11.2021

Continious Education on Laboratory Animal Sciences

Types of CRISPR Screens

Am J Cancer Res. 2021; 11(4): 1031-1050.

Increasing complexity of CRISPR Screens

Genetic Interaction maps in mammalian cells

MINGLE

In vivo screens

Immunity

Resource

In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma

Juan Dubrot,^{1,5} Sarah Kate Lane-Reticker,^{1,5} Emily A. Kessler,¹ Austin Ayer,¹ Gargi Mishra,¹ Clara H. Wolfe,¹ Margaret D. Zimmer,¹ Peter P. Du,¹ Animesh Mahapatra,¹ Kyle M. Ockerman,¹ Thomas G.R. Davis,¹ Ian C. Kohnle,¹ Hans W. Pope,¹ Peter M. Allen,¹ Kira E. Olander,¹ Arvin Iracheta-Vellve,¹ John G. Doench,¹ W. Nicholas Haining,^{1,2,3} Kathleen B. Yates,^{1,4,*} and Robert T. Manguso^{1,4,6,*}

¹Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA

²Division of Pediatric Hematology and Oncology, Children's Hospital, Boston, MA, USA

³Merck Research Laboratories, Boston, MA, USA

⁴Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA

⁵These authors contributed equally

⁶Lead contact

^{*}Correspondence: yates@broadinstitute.org (K.B.Y.), rmanguso@broadinstitute.org (R.T.M.) https://doi.org/10.1016/j.immuni.2021.01.001

CRISPR-Cas9 Components: Immune rejection

CRISPR-Cas9 Components: Immune rejection

Mice reject the tumor formation

Immuno-compromised mice

Rejection is independent of antibiotic gene

Is Cas9 Immunogenic?

NetMHcpan: Prediction software for the MHC class 1 binding peptides

Cas9 peptides induce immune response

Cas9 peptides induce memory of immune response

SCAR lentiviral vector system

SCAR lentiviral vector system efficients dowregulates genes

SCAR lentiviral vector system overcomes immune response against Cas9

SCAR prevents activation of Immune response cells

In vivo screen

Hits:

- 1. sgRNA enrichment: Genes that upon knock down enhance tumor growth (Tumor suppressors)
- 2. sgRNA depletion: Genes whose depletion result in tumor cell mortality / Tumor promoters

Volcano Plot of the differentially enriched sgRNAs

Genes whose sgRNA are depleted: Antigen presenting fctors, Atg5 and B2M

Role of Autophagy in tumor progression

In the absence of Atg5, NK cells proliferate

Role of Autophagy in tumor progression

Ligands and products of NK cells get activated in the absence of Atg5

In the absence of Atg5, cells are more sensitive to apoptosis by IFN gamma.

Role of B2M in tumor progression

Summary

- 1. Immune rejection associated with Cas9 can be solved using SCAR system.
- 2. Identified new targets to target diseases.

Questions:

- 1. Reproducibility of the screens in different Mice?
- 2. What about the stage of the tumors?

ARTICLE

https://doi.org/10.1038/s41467-021-23316-4

OPEN

In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy

Meiou Dai¹, Gang Yan¹, Ni Wang¹, Girija Daliah o ¹, Ashlin M. Edick o ², Sophie Poulet ¹, Julien Boudreault ¹, Suhad Ali¹, Sergio A. Burgos o ^{2,3} & Jean-Jacques Lebrun o ^{1⊠}

In vivo genome-wide CRISPR knockout screen in TNBC -

Quality control of the screen

Hits in the screen

Pathway analysis on the screen hits

mTOR pathway

Genes in the mTOR pathway in the screen

Genetic alterations of the 9 combined TOR hits in 3953 patients

Characterization of mTORC2 and GATOR2 function on TNBC tumor growth.

CRISPR activation of targeted hits

proteins.

Characterization of Hippo pathway on TNBC tumor growth.

Characterization of Hippo pathway on TNBC tumor growth.

CRISPR activation of HIPPO pathway leads to reduction in tumor size

Synergistic activity of drugs tageting mTOR and Hippo pathway on TNBC

Annexin V -FITC

Mechanism of how the drugs work

The combo therapy is efficient in Patient derived xenografts

The combo therapy leads to depletion of proliferating cells in Patient derived xenografts

Summary

- 1. New therapeutic targets can be identified using CRISPR screens.
- 2. New pathways involved in TNBC proliferation are identified:mTOR and Hippo pathways
- 3. Drugs targeting the pathways can be used as a therapeutic option

Questions:

- 1. Are the identified pathways universal?
- 2. Do we need to move towards custom sgRNA screens for the patients to identified suitable therapy?