Imaging for stress granules: debate for mRNA translation repression

Technical Journal Club

Tingting Liu 19-01-2021

Membrane-less organelles under stress conditions

Matheny et al, 2019, Molecular and Cellular Biology

Whether does translation of mRNAs in stress granules is suppressed or not?

- 1. Translation of mRNAs in stress granules may provide further signaling coding during cellular stress.
- 2. What's the dynamic characteristics of mRNA translation in stress granules, in particular comparing with cytosolic mRNA translation under physiological and stress conditions?

mRNAs species in stress granules

KDM5B mRNAs

(Moon et al., 2019, Nature cell biology)

5'TOP mRNAs--constitutes of ~20% of transcripts (Wilbertz et al., 2019, Molecular cell)

ATF4 mRNAs--constitutes of ~50% of transcripts (Mateju et al., 2020, Cell)

Multicolour single-molecule tracking of mRNA interactions with RNP granules

Stephanie L. Moon (1)1,2,5, Tatsuya Morisaki (1)3,5, Anthony Khong 1,2, Kenneth Lyon 3, Roy Parker (1)1,2* and Timothy J. Stasevich (1)3,4*

mRNA translation is suppressed under stress conditions

Stress induction: Arsenite treatment

mRNA translation is suppressed under stress conditions

Resume of mRNA translation following SG disassembly

Growth of SGs following arsenite stress

Single-Molecule Imaging of mRNA Localization and Regulation during the Integrated Stress Response

Johannes H. Wilbertz,^{1,2} Franka Voigt,¹ Ivana Horvathova,^{1,2} Gregory Roth,¹ Yinxiu Zhan,^{1,2} and Jeffrey A. Chao^{1,3,*}

5`-TOP, 5` terminal oligo pyrimidine *cis*-acting element; Renilla, 5`-TOP Renilla, Gaussia (secreted form): reporter mRNA; SG, stress granule; PB, processing bodies.

Three-color live-cell imaging identifies distinct mRNA localization to PBs and SGs

Three-color live-cell imaging identifies distinct mRNA localization to PBs and SGs

RNA smFISH against endogenous RPL5, RPL11, and RPL32 confirms 5`TOP-element-dependent mRNA localization to SGs and PBs

5` TOP mRNAs resume translation during recovery from stress

Single-Molecule Imaging Reveals Translation of mRNAs Localized to Stress Granules

Authors

Daniel Mateju, Bastian Eichenberger, Franka Voigt, Jan Eglinger, Gregory Roth, Jeffrey A. Chao

Cell, 2020

Single-Molecule Imaging Reveals mRNA Translation Associated with SGs

Individual reporter mRNAs, MS2 stem loops; Complementary assays for mRNA translation, SunTag array in frame with Renilla luciferase; Hela cell line stably expressing scFc-GFP and MCP-Halo;

Single-Molecule Imaging Reveals mRNA Translation Associated with SGs

SG-associated translation is not a rare event

Position of mRNAs in SGs is similar for translating and repressed transcripts

Translation of SG-associated mRNAs is similar to translation

SG-associated translation is suppressed for 5` TOP mRNAs

Summary

- mRNA translation state varies in different mRNA species.
- Localization to SGs does not prevent mRNA translation as exampled by ATF4 mTNAs.
- The continued development of single- molecule imaging techniques and fluorescent biosensors coupled with the identification of separation-of-function mutants or chemical biology tools plays a key role toward understanding the function of biomolecular condensates.
- Functional mechinary of these membrane-less organelles is an intriguing scientific question that still remains unknown.