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What are computational models?

nature Computational models are mathematical models that are
e el simulated using computation to study complex systems. In
6§ ‘{% biology, one example is the use of a computational model to study an outbreak of
| ~an infectious disease such as influenza. The parameters of the mathematical
model are adjusted using computer simulation to study different possible
outcomes.

Modeling can expedite research by allowing scientists to conduct thousands of
simulated experiments by computer in order to identify the actual physical
experiments that are most likely to help the researcher find the solution to the
problem being studied. Simulations of models can reveal hidden patterns and/or
counterintuitive mechanisms in complex systems.

https://www.nibib.nih.gov/science-education/science-topics/computational-modeling



Computational Modeling, Formal Analysis, and Tools for

Systems Biology

As the amount of biological data
In the public domain grows, so
does the range of modeling and
analysis techniques employed in
systems biology.

The growing interest in systems
biology in executable models and
their analysis has necessitated the
borrowing of terms and methods
from computer science, such as
formal analysis, model checking,
static analysis, and runtime
verification.

Tool

BAM [92]
BetaWB [12]
BIOCHAM [30]
BioDivine [69,78]

BioNetGen [22] + BioLab
[33]

Bio-PEPA WB [13]
BoolNet [52]

BMA [56]

BNS [53]

Breach [80]
CompuCell3D [103]
COPASI [8]
dReach [82]
FLAME [27]
GINsim [49]

GreatSPN [43]

IBM Rational Rhapsody
[58]

KaSim [32]
Mathworks Simulink [76]
Pathway Logic [45]

PRISM [6]
Rovergene [71]

Snoopy [26] + MARCIE [42]

SPiM [15]
S-TaLiRo [84]
REPAST [28]

Main case studies

LDL degradation pathway [93]

The MAPK biochemical pathway [12], cell-cycle [11]

Mammalian cell cycle control [34], G protein-coupled receptor kinases [31]
Genetic regulatory networks [79]

HMGB1 signal pathway [35]
Analysis of T-cell receptor signaling pathway [33]

Plant circadian clock [14]

Genetic networks [52]

Biological signaling networks [55]

Cell cycle sequence of fission yeast [54]

Collagen proteolysis [115], Cellular iron homeostasis network [81]
Vertebrate segmentation and somite formation [104]
Biochemical networks [9]

Cardiac cell hybrid models [83]

Sperm behavior [97]

Diversity and plasticity of Th cell types [50]

MAPK network on cancer cell fate decision [51]
Signal transduction pathways for angiogenesis [44]
T-cell activation with statecharts [59]

EGFR signaling [36]
Heart model for pacemaker verification [77]

Sporulation initiation in B. subtilis [46]
MAPK signaling network [46]
EGF stimulation network [45]

Biological signaling pathways [6,143,144], bone pathologies [107]

Synthetic transcription cascade [71], myocyte excitability [66], bone
remodeling [107]

Systems and synthetic biology [41]

Modeling of the EGFR network [16], MHC class | peptide optimization [17]
Modeling of the insulin-glucose regulatory system [149]

Bone remodeling [98]

doi:10.1371/journal.pcbi.1004591.t001

Example of computational models in systems biology



Modelling methods

Data driving modeling
- Multivariate regression
- Hierarchical clustering
- Principal Component
analysis
- Machine learning
- Network discovery

Multivariate

Regression

 Mechanistic modeling

- Equation base models e
- Agent-base models 1980’
-Rule-based models

Alternative models -
concurrent system
- Petri net (graph based)
- Process algebra

MEASUREMENT

Dynamic
Mechanistic
Models

Hierarchical Clustering

Machine Learning Model-Based

Patient State

Principal Component
Space P P

Analysis

Diagnosis &
Therapy

Network Discovery

1990’s 2000's - ?? ??

MODELING MODULATION

Vodovotz, Yoram, and Timothy R. Billiar. "In Silico Modeling: Methods and Applications toTrauma and Sepsis." Critical care medicine 41.8 (2013): 2008.



Computational modeling approaches

An

B(
B'(
I

PROCESS ALGEBRA

example in Beta Binder

((B(x,A.)[E)N(B(x,A,)[1]))

@ join operator
B" (x,A;)B" (,A,)(ENT)

) active binding site
) hidden binding site
parallel operator

RULE-BASED SYSTEMS

ECD O==O ECD
EGFR O e EGFR
1092~Y || 1092~Y

EGFR(ECD!1,aa1092~Y).EGFR(ECD!1,aa1092~Y)

[1] k, k, '
¢ T (An example in

BioNetGen)

ECD O==O ECD
EGFR Ollo EGFR
1092~pY)| 1092~Y

EGFR(ECD!1,aa1092~pY).EGFR(ECD!1,aa1092~Y)

PETRI NETS

O PLACE

TRANSITION

NOT ENABLED
e TOKEN

TRANSITION
ENABLED

Enzyme 1

Reaction C

Enzyme (E) Inhibitor (1) Signal Transduction Network

BOOLEAN NETWORKS STATE CHARTS HYBRID SYSTEMS

Gene
@ Cell
/ i \\ Signal Positive
Gene Gene
@ StateA | “| stateB
— <€
No Signal Signal Negative
=—x,A(x, vx —_—

5 sAlxvE) Production State X protein concentration
fy=xAx, | k, protein production rate
Sfy=—x, v(xl sz) Inhibition k, protein degradation rate
SPATIO-TEMPORAL MODELS

compartment [get c.C]

COMPARTMENT-BASED

An example in BioAmbients

molecule [in c.M]

lget/in

compartment [C]

molecule [M]

AGENT-BASED

Signaling Molecule
(Communicating Agent)

Receptor
eactive Agent)

A

Messengers
(Cooperative Agents)

Nucleus
(Reactive Agent)

Signal Ty d

LATTICE-BASED
An example with Cellular Automata

Rule

>

—

D Cell not stimulated . Cell stimulated
Electrical wave propagation in a cardiac tissue

Bartocci, Ezio, and Pietro Lié. "Computational modeling, formal analysis, and tools for systems biology." PLoS computational biology 12.1 (2016): €1004591.




Papers

' Mechanistic modeling

- Equation base models
- Agent-base models

- Rule-based models

Alternative models -
concurrent system
- Petri net (graph based)
- Process algebra

Data driving modeling
- Multivariate regression
- Hierarchical clustering
- Principal Component
analysis
- Machine learning
- Network discovery

e Petri Net computational modelling of
O pubisting up (D Langerhans cell Interferon Regulatory
scientific Reports T actor Network predicts their role in T
cell activation

Marta E. Polak, Chuin Ying Ung, Joanna Masapust, Tom C.
Freeman & Michael R. Ardern-Jones

Scientific Reports. 2017;4.
doi:10.1038/s41598-017-00651-5

~ Machine learning workflow to enhance
wows 0 predictions of Adverse Drug Reactions
i s (ADRs) through drug-gene interactions:
application to drugs for cutaneous
diseases

Scientific Reports

Kalpana Raja, Matthew Patrick, James T. Elder & Lam C. Tsoi

Scientific Reports. 2017:6.
doi:doi:10.1038/s41598-017-03914-3




T Petri Net computational modelling of
nat;pubhshmggmp@ Langerhans cell Interferon Regulatory
scientific reports -ACLOr Network predicts their role in T

cell activation

Marta E. Polak, Chuin Ying Ung, Joanna Masapust, Tom C.
Freeman & Michael R. Ardern-Jones

Scientific Reports. 2017;4.
doi:10.1038/s41598-017-00651-5




Introduction

Langerhans cells (LCs) are able to
orchestrate adaptive immune
responses in the skin by interpreting
the microenvironmental context in
which they encounter foreign
substances, but the regulatory basis
for this has not been established.
Aim:
— Utilising systems immunology approaches combining in
silico modelling of a reconstructed gene regulatory
network (GRN) with in vitro validation of the predictions,

we sought to determine the mechanisms of regulation of
Immune responses in human primary LCs.

5 'V B
~

g

Langerhans cell histiocytosis, tongue,
www.Pathpedia.Com



Introduction

response to epidermal cytokines was revealed by L ().5%
whole transcriptome analysis. =

« Applying Boolean logic we assembled a Petri net-
based model of the IRF-GRN which provides
molecular pathway predictions for the induction
of different transcriptional programmes in LCs.

 Characterise the differential effect of key
epidermal cytokines, TNFo and TSLP, on the
ability of LCs to cross-present viral antigens to
cytotoxic T cells, and to propose a transcriptional
mechanism regulating this process.



System overview

LC (skin) isolation
and culture

Microarray data
analysis

Experimental
Expression IRFs

Literature search for
model calibration

Model assembly

Model validation

Simulation
BioLayout Expresssp




Microarray data analysis
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Changes in Langerhans cell core transcriptional network

Epidermal cytokines, TNFa and TSLP, differentially regulate the expression of Interferon
Regulatory Factors in human migratory LC

Human LCs

Core transcriptomic
networks of human LCs
Expression profiles of
clusters during 24 h
simulations

Expression changes

of IRF1, IRF4 and IRF8 i
nLC

Differential induction

of IRF1 and IRF4 mRNA
by TNFa and TSLP
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Model Assembly

Search strategy to identify components of
the IRF GRN network (PubMed)

82 unique papers

number of
search term publications
"Interferon regulatory factor” or IRF and
antigen presentation 71
"Interferon regulatory factor" or IRF and
dendritic cell and T cell stimulation 22
"Interferon regulatory factor” or IRF1 or
IRF4 or IRF8 and *transcripton partner® as
per the transcription partner list 510
Interferon regulatory factor or IRF1 or
IRF4 or IRF8 and ChiP-seq 15




Model Assembly

82 unique papers

Identify

-Stimulus
-Cell type
-Biological process controlled
by IRF Interaction partner
-DNA binding sequence

Categorize

Input node

Transmission node

Output node

Mode of interaction

Interaction database

Stimulus Interaction Interaction Interaction DNA seq

Gene transcription/

partner A partner B biological process

Citation pubmed id el type Stimulus partmer A interaction Partner B DNA sequence outcome
Hildner Scienee 2008 19008445 | DC [mouse) BATFI et Ential Cross-presentation
Hildner Schenoe W08 19008445 |DC [mouse) BATFI & enitial anti=viral redpardes

BATF3 IRF4/E777 AICE? cross-presentation and CO8 responses
hia IBC 1297 SETE [nudeic acid level IFkg priming for LPS ET52 7 ETS2 - site, complex F1(IL12pa0

ET52 7 IL12pa0l+>Thl
Ry I 2015 F5957 166 | macrophages IFhg IRF1 Symergy BATFX IRF 1 hinding Thi
P recki Ji 2001 11350842 [fibrablasts (transf) IRF1 SyTErEy IRF4/PLLL ISRE/EICE IL1B
Iarecki JI 2001 11356842 |fibroblasts (transf) IRF1 Symergy IRFE/PLLL ISRE/EICE ILig
Shi Gene 2001 1803131 |manocytes IRF1 antigen processing to class|
(Cabrielle | Leukocyt Bial
2006 16966383 [DC [mouse) IRF1 inhibits immundlogical tolerance




Boolean gates

DB of
Interactions Gate AND (both essential)
Gate OR (one essential)
Boolean Gate INHIBITON
network
Interaction Interaction binding
partner 1 GATE partner 2 interaction site outcome | GATE
IRF1 and IRF1 induction ISRE TH1/CD8
IRF1 inhibition IRF4 inhibition ISRE TH1/CD8
IRF1 and IRF8 induction ISRE TH1/CD8
IRF1 not reported AP1
IRF1 not reported ETS
Boolean gates IRF4 and IRF4 inhibition ISRE TH1/CD8
IRF8 and IRF8 inhibition ISRE TH1/CD8 OR
IRF4 and AP1 induction AICE TH17
IRF4 and ETS induction EICE TH2 OR
IRF8 and ETS induction EICE CDa
IRF8 and AP1 induction AICE CD8 OR
PRDM1 inhibition IRF4 EICE CD4
PRDM1 inhibition IRF8 EICE CD4 OR




Boolean gates
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Why Petri Net?

Qualitative vs Quantitative methods / Petri Net vs ODES

 Petri nets are qualitative logic-based models do not
depend on quantitative data but rather on the structure of
the network along with a set of logical constraints.

 Built from local experimental observations or
knowledge-based information without Kinetic information
due to their finite states.

« Quantitative methods such as ordinary differential
equations (ODEs), model the rate of change of each
component in the network and require comprehensive
knowledge of kinetic parameters, which are unknown for
most networks, and therefore their applicability is limited.

* ODEs can be used for modelling small scale GRN.



Petri Net

 Originate from C.A. Petri’s PhD thesis (1962), technique
for the description and analysis of concurrent behavior in
natural processes - distributed systems

« Advantages
— based on a few simple concepts

— simple graphical format and a
precise operational semantics,
attractive option for modeling
the static and dynamic aspects of
processes

— many technigues & many
extensions and variants




Petri net

« Qualitative / guantitative
 Stochastic/ deterministic

« Limitation: model spatial
Information

 Model: Stochastic Petri Net

http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Bos-Wim.pdf

PETRI NETS
L} PLACE
TRANSITION

MNOT ENABLED
#® TOKEN

TRAMSITICHN
EMABLED

e
Reaction C
Signal Transduction Metwork




Petri net

O
|

Tokens A place can contain
zero or more tokens.

Places represent intermediate
states that may exist during the

operation of a process.

Transitions correspond to the

activities or events of which
the process is made up.

Arcs connect places and

transitions in a way that places

can only be connected to
transitions and vice -versa

http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Bos-Wim.pdf

PETRI NETS
L} PLACE
TRANSITION

MNOT ENABLED
#® TOKEN

TRAMSITICHN
EMABLED

A

e
Reaction C
Signal Transduction Metwork




IRF GRN model parametrization and design

e Token — GRN entry transitions— levels of expression of the transcript (level or on/off)

O PLACES
ENTITY NODES
L2 PROTEIN COMPLEX
") PEPTIDE, PROTEIN
[0 GENE
[ ] DNA
[T57  DNAREGION
RNA
[0 RNAREGION
@D GENERICENTITY

<" SIMPLE BIOCHEMICAL
DRUG

ION/SIMPLE MOLECULE

/ ENERGY TRANSFER (CO-REACTION)
BOOLEAN LOGIC OPERATOR
@® OR (OPERATRES AS PLACE)

SPN-SPECIFIC NODES
SPACER NODE

COMPONENT ANNOTATION

PROTEIN 1:
Mod] <n> PROTEIN 2 [Mod]
(ALIAS) (ALIAS)

PROTEIN 1

NODE COLOUR BASED ON:
- COMPONENT TYPE
- SUB-CELLULAR LOCATION
- EXPRESSION

Protein/Complex State
[A] ACTIVE
<n> NUMBER OF DEFINED ENTITY

[l INACTIVE

Protein Modifications
[P] PHOSPHORYLATED
[Ub] UBIQUITINATED

(Su] SUMOLAYTED

[Ac) ACETYLATED

[Pl PRENYLATED

[H] PROTONATED

[Pe] PEGYLATED

[Ox) OXIDISED

[Gy] GLYCOSYLATED
[Me] METHYLATED
{Pa] PALMITOYLATED
[OH] HYDROXYLATED
[S] SULPHATED
[My] MYRISTOYLATED
(Se] SELENYLATED
[ TRUNCATED

I TRANSITIONS

PROCESS NODES
BINDING (8) (0) OLIGERMISATION
CLEAVAGE (X) @& AUTO-CLEAVAGE
CATALYSIS @ @ AUTO-CATALYSIS
TRANSCRIPTION @R @ TRANSLATION
DISSOCIATION (@® @ ACTIVATION
TRANSLOCATION @ () DEPHOSPHORYLATION
PHOSPHORYLATION  (P) @B PHOSPHO-TRANSFER
AUTO-PHOSPHORYLATION @B &  SUMOYLATION
UBIQUITISATION ~ Un 5y GLYCOSYLATION
SELENYLATION 8¢ METHYLATION
PRENYLATION (@) PALMITOYLATION
ACETYLATION @ (s SULPHATION
PROTONATION ~ #9) !uy MYRISTOYLATION
PEGYLATION (¢ oW HYDROXYLATION

OXIDATION ©% () MOLECULAR INTERACTION
GENETIC INTERACTION 6§  fa TEMPLATE REACTION

MODULATION o3 @ TRANSPORT WITH BIOCHEM RXN

CONVERSION & SECRETION
MUTATION @ () UNKNOWN
()] O PATHWAY MODULE/OUTPUT

SINK (PROTERSOMAL DEGRADATION)

BOOLEAN LOGIC OPERATOR
AND (OPERATES AS TRANSITION) @

SPN-SPECIFIC TRANSITIONS
TOKENINPUT | =

DISTRIBUTION NODE @ + SPACER NODE/TOKEN OUTPUT

(20, 20) (10, 10)
EDGES
INTERACTION INHIBITION (NON-COMPETITIVE)
CATALYSIS INHIBITION (COMPETITIVE)

ACTION POTENTIAL NON COVALENT INTERACTION

COMPARTMENTS

*EXTRACELLULAR*

*CELL

*CYTOPLASM*

*NUCLEUS*

*ENDOPLASMIC

RETICULUM*

*MITOCHONDRION*
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APPARATUS"

“LYSOSOME*

mEPN notation, allowing computational modelling of concurrent systems.




IRF GRN model
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SPN model simulations

Experimentally measured expression values at

Time (in vitro) | Time (in silico)

Oh

0-8 time block

2h

9-32 time block

8h

33-75 time block

24h

76-100 time block

LC TNFa

LCTSLP

IRF1

0-8,325,;9-32,1267,33-75,1205;76-100,1782

0-8,293,9-32,841;33-75,585,76-100,796

IRF8

0-8,89;9-32,879;33-75,200;76-100,131

0-8,63,9-32,847;33-75,203,76-100,206

IRF4

0-8,3762,9-32,4296;33-75,3067,76-100,2961

0-8,3773,9-32,4618;33-75,3638;76-100,5034

cJUN

0-8,2206,9-32,4831;33-75,3571,76-100,2757

0-8,2204;9-32,4798;33-75,3147;76-100,2207

cFOSs

0-8,1072,9-32,811,;33-75,153,76-100,34

0-8,1125;9-32,783;33-75,109;76-100,43

BATF

0-8,259;9-32,490,33-75,393,;76-100,513

0-8,259,9-32,449;33-75,290,76-100,276

BATF3

0-8,174:9-32,299:33-75,511:76-100,697

0-8,174;9-32,270;33-75,325:76-100,469

ELF1

0-8,650;5-32,1112;33-75,724,76-100,521

0-8,669;9-32,1234,33-75,6582;76-100,457

ELF4

0-8,159;9-32,244,33-75,204,;76-100,198

0-8,155,9-32,238;33-75,181,76-100,163

ELK1

0-8,182;9-32,172;33-75,200;76-100,175

0-8,170;9-32,182;33-75,168,76-100,176

ELK3

0-8,194;9-32,273;33-75,249;76-100,261

0-8,272,9-32,317,33-75,248,76-100,423

ET51

0-8,775;9-32,868;33-75,883,;76-100,972

0-8,849,9-32,935;33-75,900,76-100,1292

ET52

0-8,404,9-32,413;33-75,225;76-100,118

0-8,389,9-32,463,33-75,250,76-100,130

EHF

0-8,92:9-32,133;33-75,117:76-100,295

0-8,105;9-32,146;33-75,112:76-100,229

ELF2

0-8,234:9-32,306:33-75,209:76-100,252

0-8,241:9-32,341:33-75,231:76-100,243

ETV3

0-8,956;9-32,889;33-75,544,;76-100,785

0-8,884,9-32,843;33-75,563,76-100,749

ETVE

0-8,558;9-32,412;33-75,363;76-100,392

0-8,527,9-32,485;33-75,438,76-100,448

GABPa

0-8,141,9-32,121;33-75,167;76-100,184

0-8,144;9-32,190;33-75,243,76-100,234




Model validation

 Stochastic simulation of a logic-based diagram of the IRF gene
regulatory network with Petri Nets => correctly re-capitulates
the observations from multiple experimental systems

 Qualitative: Input/Output

Model calibration

IRF GRN model

Theoretical quantities Entry nodes
0 — lack of :gii
transcription
IRF8
100 — expressed AP1-binding




Model validation

Model of IRF-GRN assembled based on a systematic literature review have been
simulated with Signalling Petri Nets in BioLayout Express 3P,
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Model validation Thl
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Model validation Th2
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Model validation ag class |
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Model validation Th17
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Extended IRF GRN model parametrization and In

silico simulations

The modulation by epidermal cytokines of LC ability to activate antigen-specific CD8
T cell responses is predicted by in silico modelling of IRF-GRN parametrised with

experimental data.
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Extended IRF GRN model parametrization and in
silico simulations

* No. of tokens in the network entry nodes: 0 /100

« SPN Stochastic Petri Nets has been set as per the levels
of expression from microarray data analysis

« BiolLayout Express3®, 100 time blocks, 500 runs.
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Simulation experiments extended IRF GRN

In silico vs in vitro results

in silico experimental
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In silico profiles of genes involved in programme “A”
and “B”
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Summary

 Simulation experiments indicated that the ability of LCs
to present a peptide to CD8 T cells would be altered by
the cytokine milieu (TNFa/TSLP), which has not

previously been reported and was not anticipate.

* Insilico simulations performed after model
parameterisation with transcription factor expression
values predicted that human LC activation of antigen-
specific CD8 T cells would be differentially regulated by
epidermal cytokine induction of specific IRF-controlled
pathways. This was confirmed by in vitro measurement
of IFN-y production by activated T cells.




Summary

* The model demonstrate that computational modelling of a
specific iImmune network can predict functional
outcomes of Immune responses based on experimentally
data.

 Platform for many future studies of human immunity,
utilising data from individual transcriptomic analyses to
provide predictions of how molecular interventions
may alter cellular phenotype based on the actual gene
expression patterns in an individual.

 This can determine the outcome of Iimmune responses in
health and in disease, and offers the possibility of
predictive in silico testing of the effectiveness of
therapeutic interventions.



~ Machine learning workflow to enhance

RERGRTS _ predictions of Adverse Drug Reactions

. “’“"@ (ADRs) through drug-gene interactions:

Scientific Reports appllcatlon to drugs for cutaneous
diseases

Kalpana Raja, Matthew Patrick, James T. Elder & Lam C. Tsol

Scientific Reports. 2017;6.
doi:doi:10.1038/s41598-017-03914-3




Introduction - Adverse drug reaction

v Adverse
Drug

v Reaction

ADRs may occur due to prolonged
administration of a drug, or combined usage
of two or more drugs

ADR is the one major reason for failure in
drug clinical trial

. ,i\. 'i‘ . ADRs: 6% of hospitalized patients
I L iid
o? .T . o? ﬁ’"‘ ° o /H\. ﬁ
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Introduction — Biomedical sources

A large amount of data (e.g., Medline, DrugBank, ...) Is
available in public domain.

e |t is not structured data stored in databases, but it is free

ext.

« Complexities and variability of natural language, and
challenging to deal with algorithmically requires

dedicated computationa

Health Records Spontaneous Reports

Biomedical Literature Clinical Trials

| Pharmacovigilance
Data Sources

Chemical & Biological Product Labeling

Social Media Search Logs

ext -mining approaches.

Cirzulation, 2004 May 4:109(17)2066-73. Epub 2004 Apr 19, NOUN P
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Yy yg

adults,
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MeSH Terms
s, Non-Steroidalipdverse effects
Cyclooxygenase 2

Cyclooxygenasg Tinbars

Cyclooxygenase Inhibitors/adverse offects’
nse Relatonship, Drug

relative risk offacute myocardial infarction (AMijlamong users of

comprehensive drug benefit

lecoxit, and[NSAIDs|in Medicare beneficiaries with @

METHODS AND RESULTS: We conducted 2 matched case-control study of 54 475 patients 65 years of age or older who received
their through 2 stz phar utical benefits programs In the United States. All heakhcare use encounters
were examined o identfy hospitalizations for AMI. Each of the 10 895 cases of AMI was matched to 4 controls on the basis of age.
gender, and the month of index date. We constructed matched logistic regression models including indicators for patient

uso, uso, ana rigk factors 10 ass0ss o rolatve risk of AMI In patients who used
rofecoxib compared with persons taking no NSAID, taking celecoxib, or taking NSAIDs. Current use of rofecoxib was associated with
an elevated relative risk of AMI compared with celecoxid (odds ratio [OR), 1.24; 95% CI, 1.05 to 1.46; P=0.011) and with no NSAID
(OR, 1.14:85% Cl, 1.00 to 1.31; P=0.054). The adjusted relative risk of AMI was also elevated in dose-specific comparisons: rofecoxib
< or =25 mg versus celecoxid < or =200 mg (OR, 1.21,85% CI, 1.01 to 1.44; P=0.036) and rofecoxid >25 mg versus celecoxib >200
mg (OR, 1.70: 96% CI, 1.07 to 2.71: P=0.026). The adjusted relative rsks of AMI associated with rofecoxib use of 1 to 30 days (OR
1.40;95% Cl, 1.12 to 1.75, P=0 005) and 31 o 90 days (CR, 1.38,85% CI, 1.11 to 1.72; P=0 003) were higher than >30 days (OR,
0.96; 95% Cl, 0.72 to 1.25; P=0.8) compared with colecoxib use of similar duration. Celecoxio was not associated with an increased
relative risk of AM! in th comparisons.

CONCLUSIONS: In this study, current rofecoxid use was associated with an elevated relative risk of AMI compared with celecoxib use
and no NSAID use. Dosages of rofecoxib 25 mg were associated with a higher risk than dosages < or =25 mg. The risk was elevated
In the first 90 days of use but not thereafter.
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Machine learning

=3 -« |n big data science, machine learning

~ . methods are computer algorithms that can
automatically learn to recognize complex
patterns based on empirical data.

* The goal of an machine learning method is to
enable an algorithm to learn from data of
the past or present and use that knowledge
to make predictions or decisions for
unknown future events.



Introduction

AIms:
- Develop novel and robust literature-mining framework for

enhancing the predictions of DDI-based ADRs by integrating
DGls.

- Use machine learning models to learn syntactic and semantic
Information from the literature, and to claissfy of ADR types.

HiEIE
i

ADR — adverse drug reaction,
DDI — drug-drug interaction
DGI — drug-gene interaction




System architecture

Chemicals and Drugs Lexicon

1 UMLS Metathesaurus *

UMLS CUI DrugBank 1D PharmGKB8 1D
Customized 1D i Drug | rm
Synonyms

@-Dmg Interaction Corpus Drug-Gene Association GubMed Stou’ag)
. Toxicogenomics

/

| XML Parser

ratn Data Test Data

—

Indexed
MedLine

{ Machine Learning Engine \
Dol
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Overview

 Predicting DDI-based ADR types consists of 4 steps

Chemical and drugs
lexicon L

Mapping L —
DDI, MLine

Drug/chemical gene
interaction — CTD

ML to classify DDI
and ADR

L - lexicon for chemicals and drugs (L)

DDI — drug-drug interaction

MDLine - MedLine abstracts

CTD - Comparative Toxicogenomics Database
ML - machine learning to classify literature

sentences for DDIs and then categorize different
ADR types.



Language processing

Corpus
A corpus is a large collection of text used for accumulating statistics and linguistic

analysis on natural language text.

Lexicon
A lexicon is a collection of information about the words of a language about the lexical

categories to which they belong (dictionary).




Chemicals and drugs lexicon

L - lexicon for chemicals and drugs

Sources

Sl

concepts belonging to
semantic groups
“Chemicals and
Drugs”

2 @ORUGBANK

8,203 drugs and
1,201 drug salts

S3 ,: PharmGKB

The Pharmacegenomics Knowledgebase

3,175 drugs




DDI corpus & Medline abstract

DDI corpus

6,793 documents

Medline e
docs  } 1,701 documents

Prior administration of 4-methylpyrazole (90 mg kg(-1) body weight) was shown to prevent the conversion of i,3-dlﬂuoro-2-propandl (100 mg kg(-1) body weight) to

(-)-erythro-fluoroditrate in vivo and to eliminate the fluoride and citrate elevations seen in 1,3-difluoro-2-propanol-intoxicated animals.

Injection of estradiol 5 min before a nonlethal dose of endotoxin changed the serum sex steroid hormone response of male rats to endotoxin.

CD RU G BA N K « DDI annotations (i.e. “True”/“False”

between any two drugs
 “True” annotations include four DDI-

Y derived ADR types

* adverse effect

» effect related to
pharmacokinetics

Other CNS depressant dru g (e.g. ba bt rates, t anquil I nd general Snesthetlcé) have additive or effects with E.When patients have received sucl

=

-
drugs, the dose of INAPSINE required will be less than usual.Following the administration of INAPSINE, the dose of other CNS depressant dmg§ should be reduced.

\ known ADR

/4 DDI-derived ADR types:\

» effect at molecular level

» drug interactions without

J

Medline
\

Medline abstracts
469,995 (i.e. >97%) citations — map 5 human genes
4,712,812 sentences from 469,995 MedLine abstracts




Extraction of Drugs/Chemicals

Extraction of Drugs/Chemicals

L lexicon

MedTagger

Extract Drugs/Chemicals

DDI corpus
MedLine sentences




Extraction of Chemical/Drug-Gene interaction

Information regarding DGIs can enhance the prediction of DDIs as well as ADR types
classification by using ML approaches

DGI Drug-gene interaction Sources: CTD, DGIdb
\ /
(’ « CTD: 500,000 DGIs from CTD, pertaining to
- , 21,986 human genes
> « Medline: 8,176 chemicals/drugs from 24,311

9 * Use lexicon to map DGIs in CTD
R

« gene(s) from the CTD database that interacts
Gene with both the drugs and retrieved the DGI
associations

» DDI corpus: 193,294 DGils for 5,773 drug pairs

CTD Comparative Toxicogenomics DB ., \edline sent: 49,188 DGIs for 935 drug pairs

DGIldb Drug-Gene Interaction DB



Application on cutaneous diseases

Identify medications for cutaneous diseases that might induce adverse reactions when
taken together with other drugs

Extracted MedLine sentences

Disease Number of mapped with drugs
unique Drugs

L PSO“_aSIS N >0 Identify sentences with

2. Atopic dermatitis 25 potential DDIs and associated

3. Rosacea 12 ADR types

4. Acne vulgaris 58

S. Alopecia 3 Mapped the DGI information

6. Melanoma 26 for drugs

/. Eczema 4

8. Keratosis 6 ML train models and classify

9. Pruritus 42 sentences with potential DDIs
and ADRs




Machine learning classification pipeline

Input data

Data
processing

Data
Balance

Classificat
ion /
Prediction

Feature
extraction

2D classification
example using
Support vector
machine (SVM)
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Classification

Step 1

Step 2

Features extraction

Data balance - SMOTE

DDI-based features

Annotations

DGI-based feature

3,767 true ADR
22,216 false ADR

1.
2
3.
A

5.

ADR classes

adverse effect

. effects at molecular level

effects related to pharmacokinetics

. drug interactions without known

ADRs
others

Step 3

Classification

DDils

ADR types

The University
of Waikato

el

SMOTE - Synthetic Minority Oversampling Technique

5 ML classifiers

« Bayesian Network

« Decision tree

« Random tree

« Random forest

» K-nearest neighbors




Feature selection

DDI:

« DDI features + total no of words, drus min no of features
before, between after each drug pair

« 24 features (after FR alg)

DGI.:
* Interaction genes + associated genes in CTD
« 20 features (after FR alg)

Feature reduction alg (FR alg): stepwise heuristic alg to
Identify top significant features



DDI features

Stepwise logistic

Mean impurity decrease

regression DD classification ADR categorization
model (p-value) D DDI+DGE (111 DD
Features Features Features Features
DDI Features  increase 6. 5Te-14 0.24 0.21 0.12 14
effect (as negation) 5.86e-12 0.21 0.17 0.00 LX)
patients 83811 0.10 0.06 0.19 022
decrease 3.57-08 0.28 0.24 0.11 01l
absorption 5.90e-07 0.13 0.11 0.12 012
decreased 1.15e-07 0.05 019 0.10 012
levels 1. 86e-06 0.20 0,14 0.19 020
auc 7.95e-04 0.16 0.19 0.08 008
effects 29205 0.10 0.06 0.16 016
metabolism 1.65e-05 0.18 0.11 0.15 01s
administration 1.301e-05 0.19 0.20 0.15 15
enhance 3. 34e-05 0.07 0.15 0.09 011
significantly {as negation) 4.6le-05 0.13 0.07 0.00 L0
inhibited 0.0201 0.12 0.14 0.04 005
increasing 0.0046 0.12 013 0.02 030
antihypertensive 0.0021 0.19 0.20 0.05 004
alter (as negation) 0.0014 017 0.10 0.00 (L0
pressure 0.0010 0.06 0.13 0.00 (.00
approximately 0.0004 0.15 0.13 024 025
potentiate 0.0005 0.18 0.16 0.00 (.00
resulted 0.0004 0.16 0.02 0.05 008
monitored 0.0003 0.15 0.19 0.11 011
administered 0,000 0.16 011 0.18 016
clearance 0.0001 0.15 0.20 0.11 013
Additional total words between drug - 0.20 (.43 0.31 033
features pairs
total drugs between drug pairs - 0.22 0.35 018 (.20
mimimum number of features - 0.26 0.:23 - -
preceding drug pairs
minimum number of features - 0.30 021 - -
between drug pairs
minimum number of features - 0.31 0.26 - -

succeeding drug pairs



DGI features

Stepwise logistic

Mean impurity decrease

regression DD classification ADR categorization
model {p-value) (B 1] DD+ D DDHDGE
Features Features Features Features
DG Featwres  acetylabion - glutathionylation - - 0.30 - 22
chemical synthesis : - - 0.07 - 21
hydrolysis
expression : hydroxylation - - 0.25 - 14
expression : glucuronidation - - 0.17 - 14
activity : oxidation - - 0.18 - 14
binding : response to - - 0.24 - 12
substance
hydroxylation : hydroxyviation - - 0.20 - 11
oxidation : response to - - 0.20 - (09
substance
activity : chemical synthesis - - 0.21 - (.0
expression ; sphicing - - 0.08 - 04
expression : stability - - 0.15 - 007
acetylation : response to - - 0.15 - 07
substance
impaort : transport - - 0.12 - (LM
glutathionylation : response - - 0.12 - (ks
o substance
degradation : methylabion - - 0.11 - (0K
localization : phosphorylation - - 016 - 003
binding : methylation - - 0.09 - 003
activity : mutagenesis - - 0.06 - 003
sulfation : sulfation - - 0.15 - 02
oidation ; exidation - - 012 - (02




Performance of lexicon on drug extraction

Performance of using the chemicals and drugs lexicon on identifying the drugs present

in DDI corpus.
True False False F-
Dataset positive positive negative FP1 Precision Recall score P1 F1
Training (Cross DrugBank 11,051 2,060 932 373 0.84 0.92 0.88 0.97 0.94
validation) MedLine 1,372 484 335 6 074 080 077 100 0.89
Overall 12,423 2,044 1,267 379 0.83 0.91 0.87 0.97 0.94
Test DrugBank 279 61 17 46 0.82 0.94 0.88 0.86 0.90
MedLine 288 191 a6 34 0.60 0.83 0.70 0.89 0.86
Overall 367 252 75 80 0.69 0.88 0.78 0.88 0.88




ML workflow on DDI/ADR types classification

DDI Prediction comparison on DDI corpus training data

DDI Features DDI and DGI Features DGI Features
Classifier Precision Recall F-score Precision Recall F-score Precision Recall F-score
Bayesian network 0.93 0.69 0.79 0.93 0.69 0.79 0.54 1.00 0.71
Decision tree 0.98 0.63 0.76 0.83 0.72 0.77 0.62 0.61 0.62
Random tree 0.76 0.77 0.76 0.79 0.77 0.78 0.69 0.71 0.70
Random forest 0.82 0.78 0.80 0.84 0.78 0.81 0.70 0.71 0.70
K-nearest neighbors 0.76 0.73 0.74 0.76 Q.77 0.76 0.69 0.73 0.71




ML workflow on DDI/ADR types classification

Performance of classification on ADR
types using DDI features on DDI
corpus training data.

Classifier

Bayesian

network

Decision

treeRandom tree

Random forest

K-nearest

neighbors

ADR Type
Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction
without known ADR

Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction
without known ADR

Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction
without known ADR

Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction
without known ADR

Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction

without known ADR

Precision Recall

0.73

0.79

0.61

0.82

0.87

0.82

0.92

0.83

0.86

0.81

0.93

0.84

0.88

0.84

0.94

0.83

0.86

0.81

0.93

076

0.52

047

0.88

0.85

0.95

0.86

0.86

0.95

0.84

0.76

0.85

F-score

0.74

0.62

0.53

0.88

0.86

0.90

0.89

0.89

0.87

0.81

0.0

0.89

Average

Precision

071

0.87

0.87

0.88

0.87

Average
Recall

0.67

0.86

0.85

0.86

0.85

Macro
Average

F-score

0.69

0.86

0.86

0.87

0.86




ML workflow on DDI/ADR types classification

Performance of classification on
ADR types using DDI and DGI
features on DDI corpus training
data.

DDI + DGI — 90%

Classifier

Bayesian

network

Decision tree

Random tree

Random

forest

K-nearest

neighbors

ADR Type
Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction without
known ADR

Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction without

known ADR
Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction without
known ADR

Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction without

known ADR
Adverse effect
Effect at molecular level

Effect related to

pharmacokinetics

Drug interaction without

known ADR

Precision Recall

0.76

0.83

0.67

0.85

0.94

0.85

0.91

0.86

0.91

0.83

0.91

0.87

0.93

0.86

0.92

0.86

0.91

0.83

0.91

0.83

0.59

0.96

0.87

0.81

0.92

0.90

0.95

0.89

0.82

0.91

0.90

Average

F-score Precision

0.90 0.89
0.90

0.83

0.91

0.90 0.88
0.90

0.81

0.91

0.91 0.80
0.91

0.84

0.92

0.90 0.89
0.90

0.81

0.91

Average

Recall

07

0.88

0.88

0.89

0.88

Macro
Average

F-score

073

0.89

0.88

0.80

0.88




Performance comparison with competing methods

Performance comparison
with the existing systems on
DDI corpus test

data

System Description Classifier DDI classification ADR categorization
P R F P R F
Our approach DDI features Random forest 0.739 0.823 0.779 0.761 0.793 0.755
DDI + DGI features 0.875 0.790 0.831 0.839 0.761 0.798
FBK-irst system  Contextual and shallow  Support vector 0.794 0.806 0.800 0.633 0.642 0.638
linguistic features machines
WBI system Ensembles of five Shallow linguistic 0.801 0.722 0.759 0.642 0.579 0.609
different classifiers kernel + a self-
developed feature
based classifier +
Turku event
extraction system
Uturku system Deep syntactic features  Turku event 0.833 0.602 0.699 0.732 0499 0.594

and information from
external domain

resources

extraction system




ADR predictions for cutaneous diseases

(a) DDIs WDDIs + DGls (b) 70.0

a) Performance of classifiers to S
predict DDIs and ADR types; s

a) Prediction of DDI and ADR % N I I I I

types at least by three classifiers; & o

Bayésuan Decision K-nearest Random Random T
network tree  neighbors forest tree DDIs DDis + DGIs

Classifier used All Classifiers

a) Performance of random forest
classifier to predict DDIs and = > o
ADR types between NDFRT B ( A 5
drugs suggested for cutaneous
diseases and drugs using DDI
features alone and DDI with DGI S
features. B eI s

® Drug pairs without interaction




Case study: ADR predictions related to psoriasis

DDIs and ADR types
predicted for psoriasis

ADR network for cutaneous
diseases showing interaction
between NDFRT drugs suggested
for cutaneous diseases and drugs.
Thickness of the edges correlate
with the number of instances to
support the ADR predictions.

y /Er;g;;‘\ Drugs

/
f

suggested |  for other
Adverse effect Effect at molecular level  Effect related to for psoriasis'  cutaneous

pharmacokinetics N diseases




Case study: ADR predictions related to psoriasis.

Validation.

PubMed Sentences with ADR
information, predicted by machine
learning workflow.

“Simultaneous use of nonsteroidal anti-inflammatory drugs NSAIDs probenecid and other drugs

has been reported to delay the plasma elimination of methotrexate in patients™.*?

“The decreased parathyroid hormone levels would then also contribui

calcitriol synthesis™.”

“QOur findings show that FKBP51 and Cyp40 are positive regulators of androgen recep
be selectively targeted by cyclosporine A and FK506 to achieve inhibition of angfogen induced

cell proliferation™*

“Albeit its great benefits as immunosuppressant, the use of Cyclosporine A has been limited by
undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia,

interstial fibrosis and progressive renal failure in transplant recipients®.28

Effect at molecular level

Adverse effect

Effect related to
pharmacokinetics

forpsoriasis  cutaneous




Case study: ADR predictions related to psoriasis

Genes in ADR prediction

Gene - DDI network for
cutaneous diseases showing
interaction between NDFRT
drugs suggested for
cutaneous diseases/drugs
with genes.

177 ADRs predicted for
psoriasis medications,
« 31 DDIs are associated
with common gene
o Drug suggested for
psoriasis
* methotrexate
 cholecalciferol
« mycophenolic

not in the same sentence!



Case study: ADR predictions related to psoriasis

Disease comorbidity through DDIs

Diseases associated with

DDI pairs from various

sources such as

« NDFRT

* DrugBank

 UpToDate

« CDC

* Mayo clinic’s Diseases
and Conditions

Diseases related to ADR prediction

Crohn’s disease

rickets in children
osteomalacia in adults

breast cancer in females
lupus erythematosus

Eczema

hypocalcemia, diabetes, atopic
dermatitis, blood pressure,
influenza, Raynaud’s disease,
melanoma and bacterial
conjuctivities




Summary

* Provide an automated approach to predict in advance
medication-related to DDIs and ADR.

 Present a workflow that integrates ML with biomedical
literature data to data-mine potential drug-drug
Interactions for cutaneous diseases.

 Successfully predict previously known ADRs for drugs
prescribed to cutaneous diseases, and are also able to
Identify promising new ADRSs.

« Conducted an intense analysis on DDIs and ADR types
related to psoriasis.

 Extend the finding to identify comorbid diseases related
to cutaneous diseases.



Software for systems biology: from tools to integrated

platforms

2011 and
before

2017

Data and
knowledge
management

Data-driven
network
inference

Deep
curation

In silico
simulation

Model
analysis

Physiological
modelling

Molecular
interaction
modelling

Tools
Software

MAGE-TAB, ISA-TAB, KNIME, caGrid,
Taverna, Bio-STEER

R, MATLAB, BANJO

CellDesigner, EPE, Jdesigner,
PathVISIO

COPASI, SBW, JSim, Neuron,
GENESIS, MATLAB, ANSYS,
FreeFEM, ePNK, ina, WoPeD, Petri
nets, OpenCell, CellDesigner +
COPASI, CellDesigner + SOSlib,
PhysioDesigner (formerly insilicol DE)

MATLAB, Auto, XPPAut, BUNKI,
ManLab, ByoDyn, SenSB, COBRA,
MetNetMaker, DBSolve Optimum,
Kintecus, NetBuilder, BooleanNet,
SimBoolNet

JSim, PhysioDesigner (formerly
insilicolDE), CellDesigner (cellular
modelling), FLAME, OpenCell,
Virtual Physiology (produced by
clLabs), GENESIS, Neuron, Heart
Simulator, AnyBody

AutoDock Vina, GOLD, eHiTS

Standards
Resources Ontologies
BioCatalogue SBO, OBO,

NCBO

KEGG, Reactome,
Panther pathway
database,
BioModels.net,
WikiPathways

RCSB PDB,
ZINC, PubChem,
PDBbind

File format

MGED
(MAGE), PSI,
MSI

SBML, SBGN,
CellML,
BioPAX, PSI-MI

SED-ML,
SBRML, PNML,
SBML

CellML, SBML,
NeuroML,
MML

Minimum
information

MIAME, MIAPE,
MIBBI, ISO
MDR, DCMI

MIRIAM

MIASE

Projects

DREAM
Initiative, Sage
Bionetworks

IUPS Physiome
Project, Virtual
Physiological
Human,
High-Definition
Physiology

This table summarizes the tools and resources that correspond to each step in a systems biology workflow; please refer to FIG. 1 for an overview of the workflow
and to Supplementary information 51 (table) for additional information and Weblinks to these resources.

OpenCell, Flame, Copasi, CellDesigner, NetBuilder, SimBoolNet,

PhysioDesigner, etc ...

Ghosh, Samik, et al. "Software for systems biology: from tools to integrated platforms.” Nature reviews. Genetics 12.12 (2011): 821.




Scope and limitations of computational methods

Models for different purposes -> different modelling technigque -> parameters estimation

Computational approaches and tools

Modeling approach

Tvpical applications

Limitations

Tools

Individual particle-
based stochastic

Small subeellular signaling processes, apects
of bacterial biochemistry

Limited to small svstems (in terms of space and
chemical complexity)

MCell (32), Smoldyn (315, ChemCell
(318), GetBonlNie (non- spatial) (49)

Particle number

stochastic

Signaling processes with important stochastic
aspects (due to small svstem size or high
sensitivity)

Limited to small svstems (in terms of space and
chemical complexity), less detail than individual
particle simulation

MesoRD (35), SmartCell (33),
GetBonlNie (non- spatial)

Concentration-based

spatial, non-stochastic

Cellular signaling processes with important
spatial aspects

Either high spatial resolution or biochemical
complexity, No stochasticity

Virtual Cell (37), Simmune (36)

Concentration-based.
non-spatial, non-

stochastic

Cellular signaling processes without spatial

aspects

Assumption of global biochemical homogeneity i

the simulated svstem

Copasi (46), E-cell (44), Cellware {457,
Svstemns Biology Workbench (47),
GetBonlNie

Germain, Ronald N., et al. "Systems biology in immunology: a computational modeling perspective.” Annual review of immunology 29 (2011): 527-585.




Limitations

* Models cannot replace laboratory experiments

— Build in virtual world based on laboratory experiments
* Models cannot prove mechanisms

— Are developed based on observed results

— Can disprove mechanisms / hypotheses

In :éﬂ.'éﬁistry, computational models may
be getting worse

Algorithms for density functional theory calculations aren't good at density.
N TIMMER www.arstechnica.com

S Science..
Density functional theory is straying from the path
toward the exact functional http://science.sciencemag.org/

“Conclusion : that the latest trend of developing functionals using unconstrained
forms leads to unphysical electron densities despite the excellent energy-
related performance of these methods.”




Conclusion

* Models have value because they allow their users to peer
at deadbolt mechanisms from a different vantage point,
sometimes even from inside.

« Computational modelling is transitioning into mainstream
science In much the same way that statistics did many
years ago.

« Computational models are becoming nearly obligatory,
especially when a study argues for a new mechanism or
functional relationship.

« More interdisciplinary work.



Thank you!

“Essentially, all models are wrong, but some are useful.” (George E.P. Box)

Acknowledgement: Anna Henzi



Appendix. Precision, Recall, and F1 Scores
Machine Learning / Model Evaluation

Positive (P): Observation is positive (for example: is an apple)

Negative (N): Observation is not positive (for example: is not an apple).
True Positive (TP): Observation is positive, and is predicted to be positive.
False Negative (FN): Observation is positive, but is predicted negative.

True Negative (TN): Observation is negative, and is predicted to be negative.

False Positive (FP): Observation is negative, but is predicted positive.

.. TP  positive predicted correctly
Precision = TP+ FP all positive predictions
TP TP  predicted to be positive
Recall = TPR = TP+FN P  all positive observations

B Precision + Recall
~ " Precision + Recall

F1




Appendix. Cutaneous diseases and their comorbid

diseases identified through ADRs

Drugl Drug2 Disease for Drugl Disease for Drug2
Drugl Drug2 Disease for Drugl Disease for Drug2 Methotrexate NSAIDs Pzoriasis Fever, pain, inflammation
Cyclosporine Calcium Psoriasis Bone related dizeases Cyelosporine Macrolide Psoriasis Bacterial conjuctivities
Methotrexate Anticancer antibiotic Psoriasis Cancer Etretinate Retinoid Psoriasis Melanoma
Thioguanine Thiopurine Psoriasis Acute lymphoblastic Diclofenac NSAID: Keratosiz Fever, pain, inflammation
leukemia|avtoimmune diserders
(Crohn's disease, rheumatoid Fluorouracil Xeloda Keratosis Colorectal neoplasms
arthritiz) Tacrolimns Caorticosteroid Atopic dermatitis Rheumatoid arthritis, Lupus,
Caleitricl Calcium Psoriasis Bone related diseases '::mma* Allergies, Addison’s
sease
Caleitricl Phosphorus Psoriasiz Bone related dizeases - Rickets in . . . o
children, Osteomalacia in adults Taerolimuos Fluconazole Atopic dermatitiz Cryptococeal me_m?lg_ma, A_]:DS—
related opportunistic infections,
Methotrexate DMARD Psoriasis Rheumatoid arthritis, Lupus Fungemia, Vulvovaginal candidiasis,
erythematosus, Psoriasis Histoplasmosis, Chronic
. . L. mucocutaneons candidiazis,
Caleitricl Zinc Pzoriasis Eczema Histop osis,
Sulfixr Antioxidant Acne vulgariz, Pzoriasiz, Cancer Coccidioidomycosis, Blastomycosis
Rosacea Temozolomide Chemotherapevtic Melanoma Cancer
Mycophenolic  Tacrolimus Psoriasis Atopic dermatitis agent
acid Zinc Heparin Eczema Thromboembolism,
Cyclosporine Androgen Psoriasis Breast cancer in females Thrombophlebitis, Pulmonary
i . o o . embolism, unstable Angina,
Cholecalciferol  Parathyroid hormone Psoriasis To control hypocalcemia in patients Myocardial infarction, Cesebral
in hypoparathyroidism infarction, postoperative
Caleitricl Parathyroid hormone Pzoriasiz To control hypocalcemia in patients complications, Coronary thrombosis
in hypoparathyroidism Zinc Progesterone Eczema Endometrial hyperplazia, Uterine
Cyclosporine Sodium Psoriasis Blood pressure and blood volume hemorrhage, female infertility,
Amenorrhea
Cholecalciferol  Calcium Psoriasis Bone related diseases
Zinc Calcium Eczema Bone related dizeazes
Methotrexate Antidiabetic drug Psoriasis Diabetes
Zine Estrogen Eczema Menorrhagia, breast neoplasms,
Sulfor Antiviral Acne vulgaris, Psoriasis, Viral diseases - Influenza (flu) premature menopause, primary
Rosacea ovarian insufficiency,
; . . L. . .. Hypogonadism, Prostatic neoplasms,
Methotrexate Antirheumatic drug Psoriasis Rheumatoid arthritis -
hot flazhes
Cyclosporine Calcium channel Psoriasis High blood pressure, Chest pain, i . i . .
i o Zinc Antipsychotic Eczema Schizoprenia
blockers Raynaud's disease 4
Methotrexate Amtifolates Psariasis Cancer Zinc Sulfonamide Eczema Acne volgaris, Acne rozacea,

Seborrheic dermatitis




Scope and limitations of computational methods

Investigation/
prediction of

Structure, function
and mechanisms
of metabolic
enzymes

Sites of
metabolism

Metabolites
(chemical
structure)

Metabolic rates

Interactions of
drugs with targets
related to drug
metabolism

Bioactivity and
toxicological
effects

Computational methods

Homology modelling, quantum
mechanics, molecular dynamics
simulations, and so on

Knowledge-based systems, data
mining, machine learning, QSAR
models, reactivity models, ligand
docking, molecular interaction fields,
shape-based methods, and so on

Knowledge-based systems, data
mining

Quantum mechanics, molecular
dynamics simulations (QSAR models)
QSAR models

Free-energy calculations

Various ligand- and structure-based
approaches

Scope, limitations

* Analysis of ligand binding events and enzyme mechanisms at a high level of detail and
accuracy

» Particularly useful for the investigation of unstable reaction intermediates with very
short lifetimes

* Able to predict the likely sites of metabolism with adequate accuracy

* In general, at least one site of metabolism is correctly identified among the three
highest-ranked atom positions of a molecule in 70-90% of all cases**? within the
domain of chemical applicability

* Dominated by knowledge-based systems
» Can produce large numbers of metabolites
* Main challenge: finding ways of ranking metabolites accurately

* Prediction generally not possible
* QSAR-like approaches may work, but only within an extremely narrow chemical space

» Prediction of ligand affinity and inhibitory activity, in cases in which adequate training
data are available
» Prediction of mechanism-based inhibitors remains highly challenging

» Accurate prediction of binding affinities without need for extensive training data
» Computationally expensive and labour-intensive

» Target prediction methods have become widely available but high false-positive rates
(that is, accurate ranking of targets) remain a limiting factor

» Prediction of bioactivities for metabolites hampered by lack of training data

» Rule-based approaches are able to detect most toxicophores, but prediction of
time-dependent inhibitors remains challenging

Kirchmair, Johannes, et al. "Predicting drug metabolism: experiment and/or computation?.” Nature reviews. Drug discovery 14.6 (2015): 387.



Appendix. Petri Net example

THE PETRI NET FORMALISM

O Place Chemical reaction of the water formation:
2H; +0, ->2 H,0
Before switch of t After switch of t
Transition »
o) O,

/ Arc

@ Token

B T T T T T T L T T T T T L L L L T T T L T T T T T L L L L T T T T T T T

http://www-dssz.informatik.tu-cottbus.de/publications/tutorial_milano_2013/1b-milano-tutorial2013-PN4SysBio_Blaetke.pdf



Appendix. Gene Ontology enrichment in clusters
preferentially induced by TNFa or TSLP signalling.

Preferentially regulated by
(time, cytokine, two way gene

Cluster ANOVA) number GO (FDR B&H)/gene list for low gene number clusters

01 TNFa (p<0.0001, p=0.021) 95 immune response (p = 0.0051), leukocyte activation (p = 0.0051),
proteasome activator complex (p = 0.009)

02 TNFa (p < 0.0001, p = 0.011) 84 Pathways: cell cycle (p = 0.008), HIV infection (p = 0.012), proteasome
(p = 0.036), cross-presentation of soluble exogenous antigens
(endosomes) (p = 0.0386),

09 TNFa (p<0.0001, p=0.052) 12 regulation of RNA splicing (p = 0.015)

17 TNFo (p < 0.0001, p = 0.018) 6 CLIP2, ILIR2, OAF, RAB38, TCF7, TMEM184C

18 TNFa (p=0.0002, p=0.002) 6 Cl7orf62, C190rf54, CPNE1, FTSID2, HECW1, STK25

03 TSLP (p< 0.0001, p=0.005) 36 no annotation

04 TSLP (p = 0.006, p = 0.001) 25 no annotation

05 TSLP (p<0.0001,p=0.019) 25 JUN kinase binding (p = 0.027)

06 TSLP (p<0.0001, p=0.001) 18 peroxisome proliferator activated receptor binding (p = 0.017)

07 TSLP (p< 0.0001, p=0.004) 18 no annotation

08 TSLP (p<0.0001, p=0.007) 16 nucleotide transferase activity (p = 0.026)

10 TSLP (p < 0.0001, p =ns) 10 nucleotide metabolism (p = 0.042)

11 TSLP (p<0.0001, p=0.022) 10 mRNA splicing (p = 0.025)

12 TSLP (p=0.0007,p=0.021) 10 Golgi aparatus (p = 0.025)

13 TSLP (p<0.0001, p=0.038) 9 transferrin receptor activity ((p = 0.001)

14 TSLP (p=0.0014, p=0.003) 8§ ATPSL, EFHAL, ID2, INIP, RECQL, RPS4X, TMSB4X, UBLS

15 TSLP (p<0.0001, p=0.054) 8 CAMKID, ELL3, LAP3, MLLT4, MPC1, NET1, NFE2L3, STOM

16 TSLP (p < 0.0001, p =ns) 7 ARAP1, CNDP2, GSDMD, N4BP2L2, NINJ2, PARP10, VPS13B




From Systems Biology to Systems Medicine

- Simulations of models can reveal hidden patterns and/or counterintuitive

mechanisms in complex systems.

- Systems medicine -> functioning of drug

- Functioning of drug -> cellular- and tissue-level networks, linked to an individual
patient’s genome, metabolome, and proteome.
- necessary to depart from gene-, protein-, and pathway-centric approaches

Systems
Biology

Systems Biology

Systems Biology + data from different sources — Mathematical Models

Mechanism of action
v i
oy ! 1 Target discovery
‘:—.‘ / “‘ Combination therapies

\ > '”’[ = \ Drug repositioning —
TR\ New indications

Biomarkers discovery

a0 Efficacy and safety
e assessment
1

'l
¥
3 . Py v L
Molecular and clinical @ e
I model -

Systems

L Medicine

From Systems Biology to Personalized Medigine

€
Y 5

v Shared
~ characteristics
S
o | e
: i s

Image from Teresa Sardon , Anaxomics, System biology approaches to personalized medicine
Wolkenhauer, Olaf, et al. "The road from systems biology to systems medicine." Pediatric research 73.4-2 (2013): 502-507.



What are computational models?

Computational modeling is the use of computers to simulate and study the behavior of
complex systems using mathematics, physics and computer science.

Multiscale modeling: A key feature of
today’s computational models is that they
are able to study a biological system at
multiple levels, including molecular
processes, cell to cell interactions, and how
those interactions result in changes at the
tissue and organ level .

https://www.nibib.nih.gov/science-education/science-topics/computational-modeling



