Assessment of human antibody repertoires to discover novel therapeutics

October 2nd 2018

Claudia Scheckel

Antibodies

Modular structure of immunoglobulin monomers

Modes of action to eliminate/neutralize disease targets:

- Blocking of molecules
- Targeting of cells
- Elimination of antigens

Antibody diversity

- Combinatorial joining of gene segments (287 different V_L's, 8262 different V_H's)
- Junctional diversification (2/3 non-functional)
- Combinatorial joining of V_L and V_H
- Somatic hypermutation

V				NDN	J	
FW1	CDR1	FW2	CDR2	FW3	CDR3	FW4

Monoclonal-Antibody based therapeutics

Advantages of antibodies:

- Specific
- Non-toxic
- Function in vivo
- Long half-life

Monoclonal antibody market:

in 2017: 100 billion

in 2021: 150 billion

(~60% of biopharmaceutical sales)

Monoclonal-Antibody based therapeutics

Phage Display

The first human antibody on market: Adalimumab (Humira)

rodent MAB32 as template

Jespers et al, 1994

- Human TNF-a antibody
- D2E7 prevents arthritis in a murine RA model
- Phase I clinical trial in 1999
- FDA approval for RA treatment in 2002
- Since 2015 best selling drug (18 billion USD in 2017)

Generation/Identification of human antibodies

Transgenic Mice

Advantages:

- Diversity
- Expression
- Stability

Disadvantages:

- Antigenicity
- Difficult counter-screening (species cross-reactivity)

Affinity maturation in vitro vs in vivo

Exploiting the potential of human antibody repertoires

nature biotechnology

Functional interrogation and mining of natively paired human V_H:V_L antibody repertoires

ARTICLE

Parallelization/Miniaturization using microfluidics High-throughput display methodology for screening Identification of natively paired human antibodies

Laboune-, June B Ledgerwood-, Barney S Granam-, Mark
Connors⁸, Daniel C Douek², Nancy J Sullivan², Andrew D
Ellington^{9,10}, John R Mascola² & George Georgiou^{1,9–11}

MABS
2017, VOL. 9, NO. 8, 1282–1296
https://doi.org/10.1080/19420862.2017.1371383

REPORT

Herren Wu¹, William F. Dall'Acqua¹, Xiaodong Xiao^{1,4} & Partha S. Chowdhury^{1,5}

GigaGen

OPEN ACCESS

Check for updates

Rare, high-affinity anti-pathogen antibodies from human repertoires, discovered using microfluidics and molecular genomics

Adam S. Adler^a, Rena A. Mizrahi^a, Matthew J. Spindler^a, Matthew S. Adams^a, Michael A. Asensio^a, Robert C. Edgar^a, Jackson Leong^a, Renee Leong^a, Lucy Roalfe^b, Rebecca White^b, David Goldblatt^b, and David S. Johnson^a

^aGigaGen Inc., 407 Cabot Road, South San Francisco, CA, USA; ^bImmunobiology Section, Great Ormond Street Institute of Child Health, University College London, London, England, United Kingdom

ARTICLE

DOI: 10.1038/s42003-017-0006-2

OPEN

Recombinant human B cell repertoires enable screening for rare, specific, and natively paired antibodies

Saravanan Rajan 1, Michael R. Kierny 1, Andrew Mercer 1,3, Jincheng Wu², Andrey Tovchigrechko², Herren Wu¹, William F. Dall'Acqua¹, Xiaodong Xiao 1,4 & Partha S. Chowdhury 1,5

- Generation of natively paired scFv's from healthy donors using microfluidics (onestep emulsion)
- Cloning of scFv libraries for phage display
- Identification of cross-reactive antibodies against influenza hemagglutinin

Workflow

Cell encapsulation and lysis

Encapsulation of cells in 10% of droplets

(Poisson statistics: 95% probability of single-cell encapsulation)

PBS (+ cytosolic dye)

RT-PCR buffer (+ cytosolic dye): release of dye

RT-PCR buffer (+ SYBR Green): release of nuclear dsDNA

Generation of natively paired scFv's

Encapsulation of human and mouse memory B cells

→ Amplification in droplets yields only correctly paired species

scFv library generation and sequencing

scFv library generation from memory B cells of healthy subjects and high-throughput sequencing

Addition of 1% IM-9 cells (expressing known V_H/V_L 's) \longrightarrow 96% accurate pairing

scFv sequence analysis

 $V_{\rm H}$ sequences

 V_L sequences

Position in read (bp)

scFv sequence analysis - V_H

scFv sequence analysis - V_L

scFv sequence analysis

Droplets: 212k unique CDR-H3/L3 cluster

Bulk: 2.5M unique CDR-H3/L3 cluster

Amplification of natively paired scFv's

Top-pair analysis

→ Better pairing accuracy than in previously published libraries

Identification of antigen-specific antibodies

Screening of Myc:scFv libraries via phage display:

2x selection on influenza A hemagglutinin (H1N1) --- polyclonal phage ELISA

robust enrichment of binders (regardless of B cell source and pre-selection)

Identification of antigen-specific antibodies

- strong bias for IgHV1-69 antibodies in bulk libraries
- IgHV1-69 can bind hemagglutinin through heavy-chain interactions alone

Identification of cross-reactive antigen-specific antibodies

Screening of 5632 clones for H5N1 binding

- 320 clones bind H5N1
 - 17 unique antibodies

Characterization of cross-reactive antibodies

- No competition with previously identified cross-reactive antibodies
- Expression/purification of 7 antibodies as IgG1's
 - 5 antibodies retained binding
 - 0 antibodies exhibited neutralizing activity

Identification of natively paired cross-reactive antibodies against influenza hemagglutinin

nature biotechnology

Functional interrogation and mining of natively paired human V_H:V_L antibody repertoires

Bo Wang^{1,12}, Brandon J DeKosky^{2–4,12}, Morgan R Timm², Jiwon Lee¹, Erica Normandin², John Misasi², Rui Kong², Jonathan R McDaniel¹, George Delidakis¹, Kendra E Leigh², Thomas Niezold², Chang W Choi², Elise G Viox², Ahmed Fahad⁴, Alberto Cagigi², Aurélie Ploquin², Kwanyee Leung², Eun Sung Yang², Wing-Pui Kong², William N Voss¹, Aaron G Schmidt⁵, M Anthony Moody^{6,7}, David R Ambrozak², Amy R Henry², Farida Laboune², Julie E Ledgerwood², Barney S Graham², Mark Connors⁸, Daniel C Douek², Nancy J Sullivan², Andrew D Ellington^{9,10}, John R Mascola² & George Georgiou^{1,9–11}

- Generation of natively paired V_H/V_L amplicons from vaccinated/infected donors using microfluidics (two-step emulsion)
- Cloning of Fab libraries for yeast display
- Identification of antibodies against Ebola/Influenza/HIV

Workflow

Optimization of Fab expression

	Displayed Fab bound antigent					
Antibody ID	EBY100	AWY101 (with PDI)	LZ dimerized Fabs expressed in AYW101			
D1 H1-2	No	Yes	Yes			
D1 H1-3/H3-3	No	No	Yes			
D1 Vic-1/Yama-1	Yes	Yes	Yes			
D1 Vic-9/Yama-5	Yes	Yes	Yes			
D1 Vic-8 Yama-20	No	No	Yes			
D1 H1-53	No	Yes	Yes			
D1 H1-12	No	Yes	Yes			
D1 Vic-20/Yama-18	Yes	Yes	Yes			
D1 H1-9/H3-7	Yes	Yes	Yes			
D1 H1/H3/Vic	Yes	Yes	Yes			
D1 H1-17/H3-14	No	No	Yes			
D1 H1-34	Yes	Yes	Yes			
D1 H3-9	Yes	Yes	Yes			

Fab surface expression in yeast

- + protein disulfide isomerase
- + dimerization

13 (13) human antibodies show antigen binding

Assessment of known antibodies

Identification of high-affinity binders

Sequential rounds of FACS

Identification of anti-Ebola antibodies

Donor analysis 6 days after EBOV immunization:

- 5002 plasmablasts
- 1189 unique CDR3H:CDR3L clusters
- 6% of Fabs in pre-sort bind antigen
- 7 antibody lineages (>100x enriched)
- IgG1 expression of eight antibodies

Biolayer interferometry

7 (8) antibodies bind with single-digit nM affinity

Identification of anti-Ebola antibodies

all of four antibodies neutralized infection

one antibody competes with KZ52 (generated during natural infection)

Ŋ				
	EBOV antibody	HV gene	% EBOV Neut. (10 μg/mL)	Fab affinity (nM)
	EBOV.YD.01	3–21	55.1 ± 1.1	74.1 ± 8.9
	EBOV.YD.02	1–46	70.8 ± 1.7	6.92 ± 0.11
	EBOV.YD.03	4–4	97.3 ± 0.3	61.0 ± 1.3
	EBOV.YD.04	3–15	98.8 ± 0.1	2.03 ± 0.07

С		Analyte							
		KZ52	EBOV YD.01	EBOV YD.02	EBOV YD.03	EBOV YD.04			
Competitor	KZ52	92.8%	22.9%	9.7%	83.6%	10.4%			
	EBOV YD.01	26.7%	82.5%	11.6%	28.1%	27.4%			
	EBOV YD.02	30.6%	26.1%	97.6%	56.4%	15.5%			
	EBOV YD.03	12.8%	10.8%	4.5%	79.6%	6.3%			
	EBOV YD.04	32.4%	49.6%	13.2%	22.0%	94.1%			

Identification of anti-HIV antibodies

HIV-infected patient harboring a broadly neutralizing anti-FP antibody N123-VRC34

- Rare antibody (0.003% of B cells)
- Mutations in FR1

requires lineage-specific primers

Identification of anti-HIV antibodies

Validation of low/middle/high affinity antibodies via biolayer interferometry

KD values correlated with FACS signal

Identification of anti-HIV antibodies

7 unique lineages (three non-synonymous aa substitutions within one codon suggest site-specific selection)

Virus	Clade	VRC34 YD.01	VRC34 YD.02	VRC34 YD.03	VRC34 YD.04	VRC34 YD.05	VRC34 YD.06	VRC34 YD.07	VRC34 01	VRC34 02*	VRC34 03*	VRC34 04*	VRC34
TRO.11	В	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
DU156.12	С	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	1.0	0.40
BG505.W6M.C2	Α	0.22	0.38	0.17	0.27	0.22	0.17	0.21	0.14	0.10	0.71	0.11	>50
Q168.a2	AD	0.19	0.65	0.28	0.36	0.37	0.29	0.30	0.18	0.10	0.30	0.25	>50
Q23.17	Α	0.13	0.29	0.08	0.13	0.08	0.05	0.11	0.11	0.062	0.24	0.28	>50
CAAN A2	В	2.4	>50	>50	4.5	>50	>50	>50	2.1	0.44	8.5	>50	>50
ZM55.28a	С	0.28	1.0	0.25	0.33	0.22	0.15	0.44	0.21	0.47	19.0	>50	>50
KER2018.11	Α	0.28	1.5	0.38	0.32	0.38	0.25	0.47	0.21	0.094	0.56	0.55	>50
Bal_01	В	0.90	2.9	1.3	1.5	2.0	0.72	1.1	0.71	0.14	0.31	0.071	>50
JRCSF.JB	В	>50	>50	>50	>50	>50	>50	>50	>50	0.56	>50	>50	>50
JRFL.JB	В	0.28	0.56	0.28	0.42	0.38	0.30	0.29	0.20	0.12	0.31	>50	>50
TRJO.58	В	6.7	47.3	8.2	19.3	35.3	9.8	8.0	4.8	5.5	>50	>50	>50
RW020.2	Α	2.4	>50	3.3	0.44	1.8	0.59	4.5	1.1	0.78	>50	2.0	>50
YU2.DG	В	2.9	>50	>50	12.3	>50	>50	>50	2.0	2.8	>50	>50	>50
PVO.04	В	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
THRO.18	В	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
ZM106.9	С	5.1	>50	>50	>50	>50	>50	>50	6.4	>50	>50	>50	>50
Q769.h5	Α	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
ZA012.29	С	1.9	3.1	2.8	2.7	3.6	2.4	2.0	1.6	1.0	>50	>50	>50
DU422.01	С	0.30	2.6	0.72	0.44	4.8	0.72	0.62	0.29	2.2	>50	>50	>50
6101.1	В	1.9	6.6	2.1	2.1	3.0	2.1	1.8	0.91	0.60	1.5	>50	>50
BG1168.01	В	1.2	7.2	1.7	1.9	5.7	2.9	1.5	1.2	0.47	>50	>50	>50

F					
•	HIV antibody clone	HIV-1 neutralization breadth	Fab affinity (nM)	From affinity gates	
	VRC34.YD.01	16/22 (73%)	26.9 ± 1.4	_	
	VRC34.YD.02	12/22 (55%)	47.0 ± 9.2	-	
	VRC34.YD.03	13/22 (59%)	30.5 ± 1.7	_	
	VRC34.YD.04	15/22 (68%)	89.6 ± 20.1	Low	
	VRC34.YD.05	13/22 (59%)	39.8 ± 4.2	Medium	
	VRC34.YD.06	13/22 (59%)	26.3 ± 1.7	Medium	
	VRC34.YD.07	13/22 (59%)	17.5 ± 0.8	High	

Potency (µg/mL) 0.010-0.10 0.10-1.0 1.0-10. 10.-50. >50

Identification of novel broadly neutralizing antibodies

^{*}Reported in Kong et al., Science 2017

Identification of anti-influenza antibodies

Libraries from 12 million B cells 270 days post influenza vaccination (0.01% B cells recognizing influenza hemagglutinin)

Identification of anti-influenza antibodies

4 antibody lineages with $K_D = 0.35-39.9$ nM when expressed as IgG1's

Identification of anti-influenza antibodies

2 (3) antibodies neutralized influenza at pM concentrations

Influenza	IgG affi	nity (nM)	Neut. IC ₅₀ (pM)		
antibody	H1	H3	H1	НЗ	
TIV01.YD.01	11.1 ± 0.4	n.b.	n.n.	n.n.	
TIV01.YD.02	n.b.	39.9 ± 6.0	n.n.	>333	
TIV01.YD.03	n.b.	0.35 ± 0.25	n.n.	15.9	
TIV01.YD.04	n.b.	4.5 ± 1.6	n.n.	10.5	

Identification of natively paired

- HIV-1 broadly neutralizing antibodies
- high affinity neutralizing antibodies against Ebola virus glycoprotein and influenza hemagglutinin

Assessment of human antibody repertoires

MABS 2017, VOL. 9, NO. 8, 1282–1296 https://doi.org/10.1080/19420862.2017.1371383

REPORT

3 OPEN ACCESS

Rare, high-affinity anti-pathogen antibodies from human repertoires, discovered using microfluidics and molecular genomics

Adam S. Adler^a, Rena A. Mizrahi^a, Matthew J. Spindler^a, Matthew S. Adams^a, Michael A. Asensio^a, Robert C. Edgar^a, Jackson Leong^a, Renee Leong^a, Lucy Roalfe^b, Rebecca White^b, David Goldblatt^b, and David S. Johnson^a

^aGigaGen Inc., 407 Cabot Road, South San Francisco, CA, USA; ^bImmunobiology Section, Great Ormond Street Institute of Child Health, University College London, London, England, United Kingdom

- Generation of natively paired scFv's from healthy vaccinated/non-vaccinated donors using microfluidics (two-step emulsion)
- Cloning of scFv libraries for yeast display
- Identification of high-affinity antibodies against Influenza A virus and pneumococcus bacteria

Workflow Overview

scFv libraries subjected to FACS for influenza A virus

Donors vaccinated for Influenza A (Fluvirin, pool of 3 patients) leukapheresis (and ELISA on serum) at Day 10

scFv libraries subjected to FACS for influenza A virus

Non-vaccinated healthy donors (pool of 52 patients)

scFv libraries subjected to FACS for pneumococcus polysaccharides

Donors vaccinated for pneumococcus (Pneumovax-23, pool of 3 patients) leukapheresis (and ELISA on serum) at Day 8

scFv libraries subjected to FACS for pneumococcus polysaccharides

- Distinct scFv sequences binding to different pneumococcal epitopes
- Increased signal due to binding multiple epitopes or differential polysaccharide labeling

Identification of antibodies against Influenza A/pneumococcus

Pre-sort libraries

- 10 000 17 500 clones/library (clones: <2aa difference)
- Divergence:92.5% for IgHV95% for IgHK
- Vaccinated libraries have more abundant sequences
- Pneumococcal vaccinated library: higher R/S ratio for IgH lower R/S ratio for IgK (measure of somatic hypermutations)

Identification of antibodies against influenza A/pneumococcus

- 247 antibodies are present at >0.1% frequency in post-sort (31-59/library)
- Identification of antibodies that were not present in pre-sort
- Identification of clonal lineages (arise from affinity maturation and selection in vivo: <9aa differences) clusters contain scFv's from either of the libraries

Analysis of scFv clonal lineages

→ Sequence variation in CDR3H and CDR3K

Analysis of scFv clonal lineages

Sequence variation mostly in CDR3H
 Higher R/S ratio in Pneumovax library (increased frequency of highly affinity mature antibodies)
 Similar divergence pre/post-sort

Generation of 10 anti-flu antigen IgG1 antibodies

AB expression in CHO and purification with protein A chromatography

 \longrightarrow Bio-layer inferometry: $K_D = 73pM - 8.8nM$

Generation of 10 anti-flu antigen IgG1 antibodies

AB expression in CHO and purification with protein A chromatography

Neutralization Assay: 10 (10) anti-flu antigen antibodies
 Incubation of antibodies and influenza viral strains
 Monitoring of cytophathic effect upon addition to MDCK cells (alive cells stain blue)

Generation of 9 pneumococcal antigen-binding IgG1 antibodies

AB expression in CHO and purification with protein A chromatography

ELISA: EC50 = 0.001 - 5.3nM

7 antibodies recognize one or two polysaccharides (serotype-specific dot blot)

2 antibodies recognize all polysaccharides (serotype-specific dot blot)

Generation of 9 pneumococcal antigen-binding IgG1 antibodies

AB expression in CHO and purification with protein A chromatography

- Opsonophagocytic killing assay
 - 6 (7) specific antibodies can prevent ingestion/phagocytosis/killing of bacteria expressing corresponding polysaccharide
 - 1 (2) non-specific antibodies can prevent ingestion/phagocytosis/killing of bacteria expressing 2 (out of 8 tested) polysaccharides

- Generation of natively paired scFv libraries
- Identification of 247 antibodies (some being as rare as 1 in 100 000)
 and 76 clonal clusters
- Generation of 17 antibodies, all of which bind the respective antigen and 15 of which are active and therefore good candidates for passive immunization

Exploiting the potential of human antibody repertoires

Affinity maturation through B cell selection

- Diversity
- Expression
- Stability
- Specificity

High-throughput approaches

- Microfluidics: miniaturization and parallelization
 Preservation of native V_H/V_I pairing
- Display methods (phage/yeast)
 Linkage of antibody sequence and function

Thank you!