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IMPRECISION MEDICINE

For every person they do help (blue), the ten highest-grossing drugs in the
United States fail to improve the conditions of between 3 and 24 people (red).
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A brief history of the term ‘precision medicine’

Precision medicine has a long list of predecessor terms with similar
meaning:

* Personalized medicine

» P4 (predictive, preventive, participatory and personalized) medicine
* Genomics medicine

* Predictive medicine

* Individualized medicine

Goal of precision medicine

To use molecular data in addition to more traditional clinical
information (for example, symptoms, personal history and histology) to
tailor medical care to provide the most benefit while minimizing risk.



A brief history of the term ‘precision medicine’

Application of precision medicine

« The greatest advances of precision medicine have been achieved
in the prediction of response to a drug therapy using companion
diagnostics.

« Formalizing and scaling up the precision medicine approach means
solving various practical problems, including

exploiting the diversity of health-monitoring devices.

developing and identifying new appropriate biomarkers that
can be used to classify patients with the same disease into
finer taxa and thus can predict response to a specific drug
treatment.



For example, classifying patients into new, specific taxa by biomarkers:
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Different types of molecule as biomarkers

Genomic biomarkers
— measurement of DNA mutations and translocations, by next-generation DNA
sequencing technologies.

Transcriptomic biomarkers
— tissue specific measurement of MRNA expression, by mMRNA sequencing
technologies.

Eplgenomlc biomarkers
microRNA (miRNA) and long non-coding RNA (IncRNA), by mRNA sequencing.
— DNA methylation and histone modifications require immunoprecipitation of the
epigenomic mark of interest.
— DNA methylation uses bisulfite conversion or restriction enzyme before microarray
or sequencing analyses.

Proteomic biomarkers
— immunohistochemical staining of proteins in formalin-fixed, paraffin-embedded
tissue samples.
— tissue microarrays plus immunohistochemical protein stains in a high-throughput
manner.
— mass spectrophotometry.



Different types of molecule as biomarkers

* Metabolomic (also known as metabonomics) biomarkers
— use mass spectrophotometry to identify chromatogram peaks as specific
metabolites.
— particularly promising for biomarker development because altered metabolism is
considered a hallmark of cancer.
— metabolomics analyses of blood, urine or faeces could serve as non-invasive
biomarkers.

 Microbiomic biomarkers
— culture independent microbial DNA sequencing techniques
(e.g. cigarette tobacco contains bacteria and that cigarette smoke can disrupt the
respiratory tract mucosal barrier to allow microbiota migration into the lung.)

« Exposome
— refers to all types of molecules and events from the environment to which humans
can be exposed; for example, drugs, diet or the microbiome.
— aspects of the exposome are commonly measured by questionnaires, which are
administered to patients in the clinic.
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Smoking is estimated to
cause 90% of lung cancers.

Occupational exposures to
carcinogens and radon
exposure are estimated to
cause 9-15% and 10% of
lung cancer cases.
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Precise cancer screening, diagnosis, prevention and therapy

E.g. lung exposome comprises a diverse array of molecules and events that come from
the external and internal lung environment, which interact with each other and host ‘omes’
to alter the lung cell environment and may promote or protect against the development of

the hallmarks of lung cancer.
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A precision medicine research strategy
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Figure 1. Trends in Age-adjusted Cancer Death Rates* by Site, Males, US, 1930-2012
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Figure 2. Trends in Age-adjusted Cancer Death Rates* by Site, Females, US, 1930-2012
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*Per 100,000, age adjusted to the 2000 US standard population. tUterus refers to uterine cervix and uterine corpus combined. ¥Mortality rates for pancreatic and liver
cancers are increasing.

Mote: Due to changes in ICD coding, numerator information has changed over time. Rates for cancers of the liver, lung and bronchus, and colon and rectum are affected
by these coding changes.

Source: US Mortality Volumes 1930 to 1959, US Mortality Data 1960 to 2012, National Center for Health Statistics, Centers for Disease Control and Prevention
@2016, American Cancer Society, Inc., Surveillance Research

Take lung cancer as an
example:

For the year of 2016,

» estimated number of new
cases is 224,390

» estimated number of deaths
is 158,080

Lung cancer causes more
deaths worldwide than the other
top three cancers combined
(Colon and rectum, Pancreas,
Breast).

The 5-year survival rate for all
lung cancer stages is below
17%, therefore presents have a
great need for improved
diagnostic precision.
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Historically, lung cancer has been grouped into small cell carcinoma, non-small cell
squamous cell carcinoma, non-small cell adenocarcinoma and large cell carcinoma
subtypes.

In the late 1980s and the mid-2000s the research community began to recognize
that lung adenocarcinoma could further be subdivided beyond histology into
cancers that were driven by KRAS and/or EGFR gene mutations.

Nat Rev Cancer. 2016 Aug;16(8):525-37.
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In 2014, The Cancer Genome Atlas (TCGA) Network’s next-generation sequencing
of lung adenocarcinoma led to the identification of more than 15 different gene
events that could be exploited for treatment and/or used for subclassifying patients

into new taxa.

Nat Rev Cancer. 2016 Aug;16(8):525-37.
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E.g. use of precision medicine to classify early stage (IA and IB) lung cancer

by biomarkers that predicts risk of recurrence generated into ‘low risk for recurrence’
and ‘high risk for recurrence’. Low-risk patients can be observed post-curative surgery
whereas high-risk patients can be provided options for adjuvant therapy post-surgery.

Nat Rev Cancer. 2016 Aug;16(8):525-37.



Challenges of developing a whole country
as a national precision medicine cohort

Collecting, handling, storing and transporting millions of biospecimens and
then analysing these data using multiple different molecular measurement
techniques.

Collecting electronic medical record data, merging data from different types
of medical records and questionnaires, and then storing large amounts of
these data.

Analysing data from different sources while respecting the strengths and
limitations of each type of data.

Combining expertise from multiple different disciplines, including clinicians,
laboratory researchers, bioinformaticians, biostatisticians and lawyers.

Dissemination of these data for researchers to use while ensuring that
legal, ethical and privacy concerns of all participants are addressed.



A typical example: Paper-1
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A typical example: Paper-1

ARTICL

L1

doi:10.1038/nature13385

Comprehensive molecular profiling of
lung adenocarcinoma

The Cancer Genome Atlas Research Network®

Nature 511, 543-550 (2014).

They reported molecular profiling of 230 resected lung adenocarcinomas
using messenger RNA, microRNA and DNA sequencing integrated with
copy number, methylation and proteomic analyses, with attention
towards pathobiology and clinically actionable events.



(1) Clinical samples and histopathologic data

They analysed tumour and matched
normal material from 230 previously
untreated lung adenocarcinoma patients
who provided informed consent.

All major histologic types of lung
adenocarcinoma were represented:
A) 5% lepidic

B) 33% acinar

C) 9% papillary

D) 14% micropapillary

E) 25% solid

F) 4% invasivemucinous,
(0.4%colloid and 8% unclassifiable
adenocarcinoma)




(2) Somatically acquired DNA alterations
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Somatic mutations in lung adenocarcinoma (Whole-exome sequencing (WES) on tumour and
germline DNA)

a) Analysis of these tumour/normal pairs highlighted 18 statistically significant mutated genes.
b) The transversion-high and transversion-low patient cohorts harboured different gene mutations.
c) Only a fraction of significantly mutated genes were enriched in men or women.



(3) Description of aberrant RNA transcripts
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Combining DNA with mRNA sequencing enabled them to catalogue aberrant RNA transcripts

and to identify the DNA-encoded mechanism for the aberration.

75% of somatic mutations identified by WES were present in the RNA transcriptome when the
locus in question was expressed.




(3) Description of aberrant RNA transcripts
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For example, MET exon 14 skipping
was observed in the presence of
exon 14 splice site mutation (ss
mut), splice site deletion (ss del) or a
Y1003* mutation.

A total of 22 samples had insufficient
coverage around exon 14 for
quantification.

129 splicing events were identified
strongly associated with U2AF1S34F
mutation.

Cassette exons and alternative 3'
splice sites were most commonly
affected.
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(4) Candidate driver genes
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GISTIC analysis of focal amplifications in oncogene-negative (n=87) and oncogene-positive (n=143)
samples identified unique focal ERBB2 and MET amplifications in the oncogene-negative subset.

TP53, KEAP1, NF1 and RIT1 mutations were significantly enriched in oncogene-negative tumours.

“‘GISTIC is a tool to identify genes targeted by somatic copy-number alterations (SCNAs) that drive cancer growth. By
separating SCNA profiles into underlying arm-level and focal alterations, GISTIC estimates the background rates for
each category as well as defines the boundaries of SCNA regions.”



(4) Candidate driver genes
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(5) Recurrent alterations in multiple key pathways
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(5) Recurrent alterations in key pathways
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Reverse-phase protein arrays (RPPA)
provided proteomic and phosphoproteomic
phenotypic evidence of pathway activity.

e.g. although KRAS-mutant lung
adenocarcinomas had  higher levels of
phosphorylated MAPK than KRAS wild-type
tumours had on average, many KRAS wild-type
tumours displayed significant MAPK pathway
activation, suggesting additional, still undetected
RTK/RAS/ RAF pathway alterations.

This analysis suggested that DNA
sequencing did not identify all samples
with phosphoprotein evidence of activation
of a given signalling pathway.

‘RPPA is a protein array designed as a micro- or nano-scaled dot-blot platform that allows measurement of protein
expression levels in a large number of biological samples simultaneously in a quantitative manner when high-quality

antibodies are available.”



(6) Molecular subtypes of lung adenocarcinoma

Broad transcriptional and epigenetic profiling can reveal downstream
consequences of driver mutations, provide clinically relevant classification and
offer insight into tumours lacking clear drivers.

To coordinate naming of the transcriptional subtypes with the histopathological,
anatomic and mutational classifications of lung adenocarcinoma, they
proposed an updated nomenclature of transcriptional subtypes:

» the terminal respiratory unit (TRU, formerly bronchioid),
* the proximal-inflammatory (PI, formerly squamoid),

« the proximal-proliferative (PP, formerly magnoid)



(6) Molecular subtypes of lung adenocarcinoma
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Previously reported associations of expression signatures
with pathways and clinical outcomes were observed and
integration with multi-analyte data revealed statistically
significant genomic alterations associated with these
transcriptional subtypes.

TRU subtype membership was prognostically favourable.



(6) Molecular subtypes of lung adenocarcinoma
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The subtypes exhibited different mutation rates, transition frequencies, genomic ploidy profiles,
patterns of large-scale aberration, and differed in their association with smoking history.
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To examine chromatin states in an unbiased manner, they selected the most variable DNA
methylation-specific probes in CpG island promoter regions and clustered them by
methylation intensity.

This analysis divided samples into two distinct subsets: a significantly altered CpG island
methylator phenotype high (CIMP-High) cluster and a more normal-like (CIMP-Low) group,
with a third set of samples occupying an intermediate level of methylation at CIMP sites.
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(Tumors are displayed as columns, grouped by integrated subtypes)

Integrative clustering (by iCluster analysis) of copy humber, DNA methylation and mRNA
expression data found six clusters.

» Tumour ploidy and mutation rate are higher in clusters 1-3 than in clusters 4-6.

* Clusters 1-3 frequently harbour TP53 mutations and are enriched for the two proximal
transcriptional subtypes.



Summary of the paper

It showed a comprehensive analysis of lung adenocarcinoma describing
many different molecular subtypes.

assessed the mutation profiles, structural rearrangements, copy number
alterations, DNA methylation, mRNA, miRNA and protein expression of
230 lung adenocarcinomas.

implicated both chromatin modifications and splicing alterations in lung
adenocarcinoma through the integration of DNA, transcriptome and
methylome analysis.

provide new knowledge by illuminating modes of genomic alteration,
highlighting previously unappreciated altered genes, and enabling
further refinement in sub-classification for the improved personalization
of treatment for this deadly disease.
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Background

Up to 30% stage | lung cancer patients suffer recurrence within 5 years of
curative surgery. They sought to improve existing protein-coding gene and
microRNA expression prognostic classifiers by incorporating epigenetic
biomarkers.

Methods

Genome-wide screening of DNA methylation and pyrosequencing analysis of
HOXA9 promoter methylation were performed in two independently collected
cohorts of stage | lung adenocarcinoma.

Then, the prognostic value of HOXA9 promoter methylation alone and in
combination with mRNA and miRNA biomarkers was assessed by Cox
regression and Kaplan—Meier survival analysis in both cohorts.



HOXA9 promoter methylation stratifies lung cancer outcome in two

independent patient cohorts

National Cancer Institute (NCI) microarray cohort
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Japan microarray cohort

Each column represents an individual patient
and each row an individual CpG probe.

55 probe sets (corresponding to 47 genes)
that were hypermethylated in tumors.

Patients in the high methylation clusters had
shorter cancer-specific (B) or relapse-free
(D) survival in Kaplan—Meier survival
analysis.



HOXA9 promoter methylation stratifies lung cancer outcome in two

independent patient cohorts
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Kaplan—Meier survival analysis of HOXA9
promoter methylation in stage | lung
adenocarcinoma.

» 3 probes were associated with HOXA®9.

« HOXA9 methylation values were
dichotomized based on 240% or <40%
mean methylation in pyrosequencing
analysis.

High HOXA9 methylation (above 40%) was
observed in 23 of 104 (22%) stage | lung
adenocarcinoma and associated with
shorter cancer specific survival in the
Kaplan—Meier  and Cox  regression
analyses, independent of stage (IB versus
IA) and smoking (table not shown).
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A combination of RNA and DNA biomarkers identifies patients with

poor prognosis in two independent cohorts of stage | lung ADC
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They previously developed RNA-based
prognostic biomarkers that stratify stage |
lung ADC patients. A combined high miR-21
and 4-protein-coding gene classifier (based
on expression of XPO1, BRCA1, HIF1aq,
and DLC1) identified a subset of stage |
lung ADC patients with poor prognosis in
the same NCI/Norway and Japan cohorts.

They categorized patients according to the
number of combined high values of HOXA9
promoter methylation, miR-21, and 4-
protein-coding gene signature.

An increasing combined score conferred
greater risk for poor outcome in stage |, and
within subgroup analysis of stage IA and
stage IB.



Conclusion of the paper

A prognostic classifier comprising three types of genomic and
epigenomic data (mMRNA, microRNA, and DNA Methylation) may help
guide the postoperative management of stage | lung cancer patients at
high risk of recurrence.

Their exploration of the lung cancer methylome in relation to gene and
MiRNA expression contributes to the molecular taxonomy of lung cancer
and may have therapeutic implications.

Their approach exemplifies the power of precision medicine to harness
diverse molecular data to better categorize disease and inform
treatment.



Thank you !

Wish you all the best for your future life !

r g

ey

- [~ 5
1 4 i
s ' - A
T TR o ek ; aqle
N e b T o il
- - oy 3 | el M
Sl WL ] = Rl
'l-:—'l-l‘-.'l X : N
- - L
- ! d ¥
! = s -
I -'I - ¥ = _
v . : | i
a3tk . e
iimi }
= | L 1
g i
iF SN

|z =4
i | e
oy | -:.ﬁ:l' il
. ri'..?s-
Th= -'I-JI_ I
| i i‘.‘ |
<o ;
|

-
..'!'l S
"‘E e

-

Cover of*Nature review cancer
August 2016 Vol 16 No 8

s I



