Mapping RNA-protein interactions

Eleanna Kara
Technical journal club
20/2/2018
Methods used to study RNA-protein interactions

• Low throughput methods
 – Electrophoretic mobility shift assay (EMSA)
 – Fluorescent anisotropy/polarization
 – Förster resonance energy transfer (FRET)
 – Surface plasmon resonance (SPR)
 – Microscale thermophoresis (MST)
 – Stochastic optical reconstruction microscopy (STORM)

Permit analysis of only a few RNA-protein interactions at a time.
Methods used to study RNA-protein interactions

- High throughput methods -> genome-wide identification of RBPs
 - Based on next-generation sequencing, protein mass spectrometry and RBPs immunoprecipitation
 - 2 categories
 - Protein-centric approaches
 - RNA-centric approaches
Protein-centric approaches – *in vivo*

RNA immunoprecipitation (RIP) (Tenenbaum et al, 2000)
- Protein-specific antibody
- Detection of RNAs
 - RIP-chip
 - RIP-seq
- Problems:
 - Non-specific interactions

Cross-linking and immunoprecipitation (CLIP)
- Variants (depending on cross-linking and library preparation protocols)
 - HiTS-CLIP (high throughput sequencing of cDNA library) (Licatosi et al, 2008)
 - PAR-CLIP (photoactivable ribonuclease enhanced) (Hafner et al, 2010)
 - iCLIP (individual-nucleotide resolution) (Konig et al, 2011)
 - eCLIP (enhanced) (Van Nostrand et al, 2016)
- Problems
 - False negatives
 - Laborious
 - UV-induced cross-linking:
 - Not all RBPs are amenable (Darnell, 2010)
 - Captures only direct RNA-protein interactions
Protein-centric approaches – *in vivo*

Biological insights

- **CLIP** (*Ule et al, 2003*)
 - Role of NOVA 1 and 2 in paraneoplastic opsoclonus-myoclonus-ataxia (POMA)
 - NOVA proteins regulate alternative splicing of RNAs encoding proteins of inhibitory synapses (GABAβ2, GIRK2)

- **RIP-chip** (*Ince-Dunn et al, 2012; Lu et al, 2014*)
 - Targets of ELAVI family
 - Role in cancer pathogenesis and neurological disease
Protein-centric approaches – *in vitro*

- **Techniques:**
 - Microarrays
 - Microfluidics
 - Fluorescent labeling
 - RNA seq

- **Variants**
 - RNA-compete
 - Target protein immobilized on affinity matrix
 - Fluorescent labeling of RNAs
 - Hybridization to a microarray
 - SEQRS (selection high throughput sequencing of RNA and sequence specificity landscape)
 - RBNS (RNA Bind-n-Seq)
 - RNA-Map (Quantitative analysis of RNA on a massively parallel array)
 - HiTS-RAP (high-throughput sequencing RNA affinity profiling)
 - RNA-MITOMI

Marchese et al, 2016

Visualization of multiple proteins simultaneously
RNA-centric approaches

- Identify RBPs targeting a single RNA of interest
- Tagged RNAs
 - Affect secondary structure of RNA
- Modified ribonucleotides (e.g., biotin, fluorescent dyes)
- In vivo
 - MS2-BioTRAP
 - MS2-hairpin loop tagged RNA
 - Bacteriophage MS2 coat protein-protein tag
 - ChIRP (chromatin isolation by RNA purification)
 - CHART (capture hybridization analysis of RNA targets)
 - RAP-MS (RNA antisense purification)
- In vitro
 - TRAP/RAT
 - RaPID
 - RiboTrap
 - RNA-assisted chromatography

Marchese et al, 2016
The current methods used to detect RNA-protein interactions are far from perfect.

- Each method offers a partial/biased/inaccurate snapshot of protein-RNA interactions.
Capturing the interactome of newly transcribed RNA

Xichen Bao\(^1,2,24\)\(^\ddagger\), Xiangpeng Guo\(^1,2,24\), Menghui Yin\(^3,24\), Muqddas Tariq\(^1,2,4\), Yiwei Lai\(^1,2,4\), Shahzina Kanwal\(^1,2\), Jiajian Zhou\(^5\), Na Li\(^1,2,6\), Yuan Ly\(^1,2,4\), Carlos Pulido-Quetglas\(^7\), Xiwei Wang\(^1,2\), Lu Ji\(^5\), Muhammad J Khan\(^1,2,8\), Xihua Zhu\(^1,2\), Zhiwei Luo\(^1,2,4\), Changwei Shao\(^9\)\(^\ddagger\), Do-Hwan Lim\(^9\), Xiao Liu\(^10\), Nan Li\(^11\), Wei Wang\(^12\), Minghui He\(^13\), Yu-Lin Liu\(^14\), Carl Ward\(^1,2\), Tong Wang\(^15\)\(^\ddagger\), Gong Zhang\(^15\), Dongye Wang\(^1,2,16\), Jianhua Yang\(^17\)\(^\ddagger\), Yiwen Chen\(^18\), Chaolin Zhang\(^19\), Ralf Jauch\(^16\)\(^\ddagger\), Yun-Gui Yang\(^20\)\(^\ddagger\), Yangming Wang\(^21\)\(^\ddagger\), Baoming Qin\(^1\), Minna-Liisa Anko\(^22\), Andrew P Hutchinson\(^23\)\(^\ddagger\), Hao Sun\(^5\)\(^\ddagger\), Huating Wang\(^5\), Xiang-Dong Fu\(^9\)\(^\ddagger\), Biliang Zhang\(^3\)\(^\ddagger\) & Miguel A Esteban\(^1,2\)\(^\ddagger\)

RECEIVED 19 JULY 2017; ACCEPTED 11 DECEMBER 2017; PUBLISHED ONLINE 12 FEBRUARY 2018; DOI:10.1038/NMETH.4595
Limitations of current methods used to map RNA-protein interactions

• Focus on polyadenylated (polyA) RNAs (mostly mRNAs) with oligo(dT)-coated beads (Castello et al, 2012, Cell).

• Problems:
 – PolyA tails: newly transcribed RNAs
 – Mature mRNAs: can be non-polyA or bimorphic
 – Mature non-polyA RNAs are a substantial fraction of transcribed sequences
Method development

Capture of the newly transcribed RNA interactome using click chemistry (RICK)

Click chemistry reaction for EU-RNA labeling with biotin-azide

![Click chemistry reaction](image)

EU=ethynyluridine
Label the 5' terminus of RNA
Catalysts: Cu2+, sodium ascorbate

Visualization of EU incorporation (indicated by DAB staining) in HeLa cells

![Visualization](image)

Confirmation of the specificity of the pull down (silver staining)

![Confirmation](image)

Western blotting to validate the capture of known RBPs by RICK

![Western blotting](image)
Characterization of the method

Determination of RNA species captured by RICK

Distribution of RNA species isolated in a representative RICK experiment

RNA sequencing on a RICK pull-down sample

Comparison with oligo(dT) isolation method

80% of captured RNAs were mRNAs

Castello et al, 2012 Cell
Characterization of the method

Determination of RNA species captured by RICK

Non-polyA RNA species isolation with RICK vs oligo(Td) methods

A. Circular RNAs

<table>
<thead>
<tr>
<th>Name</th>
<th>Coding gene</th>
<th>Read No.</th>
<th>Sequence of joint site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circ-6763 CCACT1</td>
<td>20/0</td>
<td>CCAGTTGGAG ATTACGAATG</td>
<td></td>
</tr>
<tr>
<td>Circ-1903 RPPH1</td>
<td>23/0</td>
<td>GCGCGGGAAG GTGAGTCC</td>
<td></td>
</tr>
<tr>
<td>Circ-2154 MGA</td>
<td>14/0</td>
<td>TTTCGATATG GGATGGGAG</td>
<td></td>
</tr>
<tr>
<td>Circ-1557 CPSF6</td>
<td>10/0</td>
<td>TGTTAGAAG GGAAGCTGA</td>
<td></td>
</tr>
<tr>
<td>Circ-2327 IGF1R</td>
<td>27/0</td>
<td>GAGCAAGAAT GTCGGCG</td>
<td></td>
</tr>
<tr>
<td>Circ-3811 TET3</td>
<td>2/0</td>
<td>GATTCCCTCG GACACGCTCA</td>
<td></td>
</tr>
</tbody>
</table>

TR=traveling ratio

B. Proximal promoter RNAs

Transcriptionally paused genes

Transcriptionally active genes

C. Enhancer RNAs

Verification of results with qPCR

RICK control=without EU treatment
Characterization of the method

Characterization of proteins isolated by RICK

Analysed the proteins with liquid chromatography–tandem mass spectrometry (LC-MS/MS)

Comparisons

• HeLa mRNA interactome by oligo(dT) capture (Costello et al, 2012)
• RICK by authors
• Oligo(dT) capture by authors

Oligo(dT) capture in the presence of EU to evaluate whether its incorporation affects RNA–protein interactions

RICK vs HeLa mRNA interactome (Castello et al, 2012):

• 720 RICK
• 860 mRNA interactome
• 350 in both datasets
• 370 only in RICK

RICK vs authors’ oligo(dT) capture (excluding HeLa interactome):

• 26 overlap
• 344 “RICK-exclusive RBPs”

HeLa mRNA interactome vs authors’ oligo(dT) capture:

• 81.6% overlap

Comparison of the 344 RICK-exclusive RBPs with three reported human oligo(dT) capture studies

Most of these proteins (295, 85.8%) are truly unique to RICK =‘RICK unique RBPs’.

• Baltz et al, 2012 Mol Cell
• Beckmann et al, 2015 Nat Commun
• Conrad et al, 2016, Nat Commun
Characterization of the method

Functional analysis of proteins isolated with RICK

Gene Ontology (GO) analysis of the 295 RICK unique RBPs, observing enrichment of biological processes related to “mitosis”

KEGG pathway analysis also included “cell cycle” ($P = 3.16 \times 10^{-11}$) amongst the top ten most significantly enriched pathways

GO and KEGG analysis of the 425 proteins identified by RICK and present in oligo(dT) capture data sets showed mostly RNA-related processes
Characterization of the method

RICK identifies proteins with preferential binding to non-polyA RNAs

Added another step consisting of three consecutive rounds of incubation with oligo(dT)-coated beads to the standard RICK protocol.

Confirmation of efficient removal of polyA RNAs by RT-qPCR, whilst the control 18S RNA remained unaffected.

LC-MS/MS identified 914 high-confidence proteins (‘polyA-depleted RICK proteins’). Of these 914 proteins, 576 overlapped with the 720 high-confidence proteins of the standard RICK procedure.

GO analysis: enrichment of biological processes related to mitosis.
Proof of concept experiments

Characterization of RNAs interacting with METTL1 and CDK1

Study of the interacting RNAs of two RICK-unique RBPs, METTL1 and CDK1 using PAR-CLIP sequencing

Two independent PAR-CLIP sequencing experiments for METTL1 showed extensive overlap in the captured RNAs, a large proportion of which were captured with RICK too.

RNA-binding profile of METTL1

Sequencing tracts for METTL1 (Rep1=1st replicate, Rep2=2nd replicate)

RIP-qPCR using random hexamers or oligo(dT) primers to discern whether METTL1 target RNAs have polyA tails

RIP-qPCR validated the interaction of METTL1 with the nonpolyA VTRNA1-3

METTL1 binding motif

tRNA binding motifs
Proof of concept experiments

Characterization of RNAs interacting with METTL1 and CDK1

Study of the interacting RNAs of two RICK-unique RBPs, METTL1 and CDK1 using PAR-CLIP sequencing

Comparison of results between PAR-CLIP sequencing and RICK RNA-seq

- RIP-qPCR confirmed the capture of selected intergenic RNAs identified in the sequencing
- Of six selected mRNA sequences, only one showed enrichment with oligo(dT) primers using RIP-qPCR
Demonstration of applications for RICK

Capture of the nascent RNA interactome using RICK

Protocol: Short EU labeling of HeLa cells

![Diagram showing the protocol](image)

Short vs long RICK EU incubation

- % of sequences corresponding to 5'UTR, CDS, and 3'UTR was reduced with the short-labeling RICK=accumulation of fewer mature mRNAs

WB validation of two nascent-enriched RBPs

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Pull-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICK</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Oligo(dT)</td>
<td>2</td>
<td>EU- EU+</td>
</tr>
</tbody>
</table>

Enrichment in transcription and RNA metabolism

- 208 nascent-enriched RBPs
- Biological process analysis
 - RNA processing, mRNA processing, RNA splicing, Gene expression, RNA metabolic process, ncRNA processing, Regulation of gene expression, Transcription from RNA pol II promoter

GO analysis

- cofactor metabolic process
- coenzyme metabolic process
- NAD metabolic process
- cell activation
- exocytosis

43 nascent-enriched RBPs

* Nascent=emerging/primary RNAs
Demonstration of applications for RICK

Capture of the total RNA interactome of mESCs using RICK

Incorporation of EU in cells as shown by streptavidin-conjugated horseradish peroxidase

Overlap with mESC mRNA interactome (Kwon et al, 2013, Nat Struct Mol Biol)

GO enrichment of RNA-binding or polyA-RNA-binding terms or RICK-exclusive mESC RBPs

95 of those proteins were expressed at higher levels in mESCs than in differentiated cells

ESC-specific gene sets:
- Wong et al, 2008 Cell Stem Cell
- Ben-Porath et al, 2008, Nat Genet
- Bhattacharya et al, 2004, Blood
Conclusions

- Alternative to oligo(Td) beads pull-down that allows a more unbiased capture of RNA species because it doesn’t depend on polyA tails

- RICK modifications can be used to broaden the applications of this technique
 - Short-labeling RICK
 - Link between metabolic enzymes and nascent RNAs
 - Interaction between RBPs and steady-state RNAs
 - Map dynamic changes during acute cell stimulation or stem cell fate transitions
 - Live animals: characterization of RBPs in mammalian organs or during development
RNA–protein interaction detection in living cells

Muthukumar Ramanathan¹, Karim Majzoub², Deepti S Rao¹, Poornima H Neela¹, Brian J Zarnegar¹, Smarajit Mondal¹, Julien G Roth³, Hui Gai³, Joanna R Kovalski¹, Zurab Siprashvili¹, Theo D Palmer³, Jan E Carette² & Paul A Khavari¹,⁴*
Limitations of current methods used to map RNA-protein interactions

- Biases from postlysis protein reassortment

- Aim of the study
 - Direct labeling of proteins that bind to specific RNA motifs in intact live cells

- Proximity-dependent protein labeling
Method development

Development of RaPID (RNA-protein interaction detection)

RNA component
BoxB stem loops flanking any RNA motif of interest.

Protein component
22-amino-acid λN peptide fused to the N terminus of the HA-BirA* biotin ligase (λN–HA-BirA*).

Procedure
BoxB stem loops recruit the RaPID protein

↓
Biotinylation of proteins bound to the flanked adjacent RNA motif of interest

↓
Streptavidin capture of motif-bound proteins for analysis by western blotting and mass spectrometry (MS).
Proof of concept experiment
Validation of RaPID with known RNA–protein interactions

Conventional biotinylated RNA pulldown

RaPID-Western
Expression of RaPID RNA and protein components in HEK cells in biotin-containing media

Pulldown of biotinylated proteins with streptavidin beads

Western Blotting

RaPID-mass spectrometry (RaPID-MS)

Identification of true binding proteins:
- CRAPome filtering analysis
- Significance analysis of interactome (SAINT) threshold score of 0.9

http://crapome.org/

Confirmation of RaPID’s ability to identify known RNA-protein interactions in living cells

EDEN15: UG-rich RNA sequence known to bind CELF1

4-fold enrichment of CELF1 proteins over scrambled controls

Conventional biotinylated RNA pulldown vs RaPID

Fold change = obtained through CRAPome analysis

EDEN15: UG-rich RNA sequence known to bind CELF1

Confirmation of RaPID’s ability to identify known RNA-protein interactions in living cells

Conventional biotinylated RNA pulldown

RaPID-Western
Expression of RaPID RNA and protein components in HEK cells in biotin-containing media

Pulldown of biotinylated proteins with streptavidin beads

Western Blotting

RaPID-mass spectrometry (RaPID-MS)

Identification of true binding proteins:
- CRAPome filtering analysis
- Significance analysis of interactome (SAINT) threshold score of 0.9

http://crapome.org/

Confirmation of RaPID’s ability to identify known RNA-protein interactions in living cells
Proof of concept experiment

RNA–protein interaction information

Using RaPID to study the pathogenesis of human disease

- Hereditary Hyperferritinemia- Cataract Syndrome (HHCS)
 - Disorder characterized by increased serum ferritin levels and early-onset cataracts
 - Iron responsive element (IRE) RNA motif in the L-ferritin (*FTL*) gene transcript altered by point mutations
- IRE binding proteins
 - IREB2 and IRP1 (IREB1/ACO1)
 - Regulate the translation/stability of target transcripts in the iron metabolic pathway.

RaPID-Western

- Significant IREB2 enrichment over scrambled controls
- Disease associated IRE mutants had lower fold IREB2 binding enrichment compared to wild type IRE
- Binding loss correlated with increased serum ferritin levels seen in specific HHCS patient mutations

Effect of iron levels on the ability of IREB2 and IRP1 to bind with IRE

- Evaluation of the interaction between IRP1 and the IRE by RaPID-WB
- DMSO and Deferoxamine (DFO) treatment
 - IRE motif interaction with IRP1
- Ferric ammonium chloride (FAC): raises iron levels
 - There was no interaction detected between IRE and IRP1
Proof of concept experiment
Identification of host proteins associated with ZIKV RNA

- To identify host proteins that bind ZIKV RNA, RaPID-MS was performed using ZIKV UTR sequences from the current epidemic strain (KU527068)
- Enrichment in cell cycle proteins

ZIKV UTR interacting proteins identified by RaPID were intersected with Tissue Protein Atlas.

QKI depletion in the U87 Neuroblastoma cell line

QKI loss decreased ZIKV viral RNA levels by 90% without altering control Coxsackievirus B3 viral RNA levels

QKI protein levels decrease as neural progenitor cells (NPCs) differentiate to neurons
Proof of concept experiment
Characterization of synthetic RNA motifs

- RaPID-MS
- 3 representative conserved RNA motifs identified by a comparative analysis of 41 vertebrate genomes (Parker et al, 2011, Genome Res)
 - Histone SL-UTRP11
 - PPP1R3C–UTRP30
 - IRE–UTRP35
- Synthetic concatamer (Syn-EIR) consisting of the EDEN15, IRE and ROQ CDE motifs
 - Bind CELF1, IREB2 and RC3H1 proteins, respectively.

LC-MS/MS SAINT scores for each protein-RNA motif pair

<table>
<thead>
<tr>
<th>RNA motifs</th>
<th>SLBP</th>
<th>PLM1</th>
<th>CELF1</th>
<th>IREB2</th>
<th>RC3H1</th>
<th>FUBP3</th>
<th>HELZ</th>
<th>ZNF277</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histone SL (UTRP11)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p38_NRE</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EDEN15</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IRE (UTRP35)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPP1R3C (UTRP30)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Synthetic–EIR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.94</td>
<td>0.99</td>
</tr>
<tr>
<td>SM1v1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.98</td>
</tr>
</tbody>
</table>

FC=fold change
Demonstration of applications for RaPID

RaPID-MS specificity and new RNA–protein interactions

Among new interactions identified by RaPID-MS is RC3H1 protein binding to the SM1v1 RNA motif

- Decreased levels of RNA transcripts bearing SM1v1 motifs in breast cancer patients with advanced tumours (Tavazoie et al., 2014, Cell Rep).
- Analysis of TCGA breast cancer data demonstrated that RC3H1 and RC3H2 mRNA upregulation correlates with poorer breast cancer survival.
- RC3H1 and its paralog RC3H2 are known RNA-binding proteins that promote RNA decay.

CLIP-qPCR demonstrated the direct nature of the interaction between SM1v1 RNA and RC3H1 protein.
Expanding the spectrum of the assay
Additional BirA* proximity-labeling proteins

Generation of a faster biotin ligase for RaPID

- *E. coli* BirA* requires 16–18 h for optimal labeling.
- Aim: generation of a faster biotin ligase
- Structural and sequence comparison of *E. Coli* BirA* to other biotin ligases in the UniProt database lead to the identification of four motifs:
 - Reactive biotin-5-AMP binding motif (RBAM)
 - Avidin-like biotin binding motif (ABM)
 - Adenylation motif (AM)
 - Proximal to adenylation motif (PTAM)

<table>
<thead>
<tr>
<th>Mutant BirA*</th>
<th>Reactive biotin-5-AMP binding motif (RBAM)</th>
<th>Avidin-like biotin binding motif (ABM)</th>
<th>Adenylation motif (AM)</th>
<th>Proximal to adenylation motif (PTAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>1</td>
<td>321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. aeolicus</td>
<td>1</td>
<td>233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodanobacter spp</td>
<td>1</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanerella spp</td>
<td>1</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. brucei</td>
<td>1</td>
<td>247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. subtilis</td>
<td>67</td>
<td>325</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- BASU was assessed for labeling activity by exposing cells for 1 h in 200 μM biotin media.
- BASU displayed substantially higher global streptavidin signal relative to other mutant BirA*s
Expanding the spectrum of the assay
Additional BirA* proximity-labeling proteins

Generation of a faster biotin ligase for RaPID

Comparison between E.coli BirA* and BASU

To compare BASU to E. coli BirA* and BioID2 in the context of RaPID, the RC3H1 protein-binding TNF-CDE RNA motif was used.

BASU-RaPID yielded a strong signal in as little as 1 min
Conclusions

• **Advantages**
 • No need for formaldehyde cross-linking
 • Requires fewer cells
 • Motifs <50 nucleotides long -> short RNA sequences
 • Complement in vitro methods used to study protein-RNA interactions
 • BASU: offers the opportunity to monitor short timescale protein interactions in vivo

• **Limitations**
 • Biotin-ligase-based proximity proteomics are based on biotinylation of lysine residues of proteins, therefore not all proteins might be equally detected because lysine residues aren’t equally exposed on their surface
 • RaPID can’t distinguish between directly interacting proteins vs proteins that interact indirectly with RNA
 • Can’t be used to study endogenous RNAs at their physiological concentrations
General conclusions and commentary

- Both methods are robust and the papers are thorough with the appropriate controls and validation experiments.
- Both papers demonstrate the types of potential applications for the methodologies they developed.
- The first method might be more useful for high throughput screenings vs the second method for targeted validation of RNA-protein interactions.
Every aspect of RNA life involves protein binding

- miRNAs bind to Argonaute proteins to reach target mRNAs
- piRNAs bind to PIWI proteins to form silencing complexes to protect the germline genome from transposons
- Formation of membrane-less organelles (P-bodies, stress granules)
- Mutations in RNA-binding proteins cause human disease (neurodegeneration, cancer)

Marchese et al, 2016