Avoiding dissociation bias with

single-nucleus RNA-seq

Technical Journal Club
Lukas Frick
9 December 2019



Single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq
(snRNA-seq) are competing technologies with the same goal
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Other technologies (bulk RNA-seq, ribosome profiling) produce a
complete transcriptome, but they cannot examine single cells!

e Single cell-transcriptomics has unique advantages:

* |t can define new and rare cell subtypes, or new differentiation states
(example: disease-associated microglia).

* |t correctly identifies a gene that is upregulated in one cell type, but
downregulated in another!

* |t can distinguish between a gene that is truly overexpressed, and a gene that
seems upregulated because a particular cell subtype is more abundant.



Single-cell RNA-seq requires enzymatic digestion of fresh tissue,
which can introduce technical artefacts

Single cell RNA sequencing of human liver reveals
distinct intrahepatic macrophage populations

MacParland et al, Nat Comm, 2018

Digestion of human liver for scRNA-seq:

e The caudate lobe was resected before
transplantation.

* |t was cannulated via 2-3 exposed
vessels in the cut surface, and perfused

with collagenase and neutral protease.


https://dx.doi.org/10.17504/protocols.io.m9sc96e

In scRNA-seq, cells from multiple individuals are pooled ...

If a cluster comes from a single individual, this points to technical issues!
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Protocols that involve perfusion with collagenase cannot be
applied to small biopsies or frozen tissue

/ More recent paper:
12 samples from liver

A human liver cell atlas reveals resections were again
heterogeneity and epithelial progenitors

perfused with collagenase

\ Aizarani et al, Nature, 2019 /

Next challenges for scRNA-seq:
 Routine clinical samples
* Pathology



Single-nucleus RNA-seq can be done on frozen tissues and
without the need for enzymatic digestion
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The invention of DroNc-seq (snRNA-seq with droplet technology)
enabled snRNA-seq on a larger scale
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1. Nuclei isolation 2. DroNc-seq 3. Analysis

e mRNAs from single nuclei are captured on barcoded beads.
e The barcodes uniquely identify each sample and each cell.
— Samples are pooled for reverse transcription (RT) and sequencing.
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Samples were selected from the Religious Order Study (ROS)

... a longitudinal cohort study of elderly nuns, priests and brothers.

e 48 subjects:
e 24 without pathology

e 24 with Alzheimer’s disease

(mild to severe B-amyloid)

female/male

 Matched for sex, age (~87 years), and years of education (n=12)

e Extensive prior data was available:
e Clinical data, cognitive tests, detailed post-mortem

* Bulk RNA-seq, genetics, epigenomics, proteomics, metabolomics...



Methods: Tissue processing Brefronts] cortex

* Frozen post-mortem samples from the prefrontal (‘\
cortex were used. W
e Protocol: £

e All procedures are carried out on ice.

e Homogenize using a Dounce tissue grinder s
(10 strokes with the loose pestle).

e Filter through a 40 um cell strainer. .

e Load on top of OptiPrep density gradient
and separate nuclei by centrifugation.

e Count nuclei and dilute to 1000 nuclei/pL.



Methods: Droplet-based single-nucleus RNA-seq (DroNc-Seq)
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Cells are delivered at a limiting dilution, such that the most (~90-99%) of droplets contain no cell,
while the rest largely contain a single cell.



Methods: Data pre-processing

e Read depth was equalized between the 48 libraries before merging.

e Low-quality cells were excluded:
e Cells with <200 detected genes
e Cells with a high ratio of mitochondrial to endogenous RNAs

— indicates dead or stressed cells

) 80,660 cells
— Final dataset:

e 75’060 nuclei
e 17'926 protein-coding genes



Methods: Cluster identification
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Spurious clusters (doublets, low-quality cells) were excluded — 70’634 cells remained



Methods: Quality check

Known cell-type specific
marker genes were found
in the expected clusters.

(Owing to their low cell
counts, pericytes and
endothelial cells populations
were not analyzed for
differential expression.)
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Methods: Quality check
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Most highly upregulated genes
Alzheimer’s-associated DEGs
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DEGs
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The APOE gene was upregulated
AD-pathology

™ in microglia, but downregulated
cf) —
) APOE . |
o o - N astrocytes.
? Mic
N| — -
o
*qc'; o - - Microglia:
E e Ast n =955 AD cells
a n = 965 no-pathology cells
No-pathology Astrocytes:

n = 1830 AD cells

n = 1562 no pathology cells
Fig. 1f



snRNA-seq versus snRNA-seq data was compared with

oulk RNA-seq bulk RNA-seq data.
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Clustering based on clinic-pathological traits was done to divide
AD patients into early and late stages

AD-pathology
No-pathology Early Late

_h.,..r_._ILﬁIWW ﬁﬁmm

Individuals

Tangles

NFT

gpath
gpath_3neocort
plag_n

Amyloid
cogn_global_lv

Z- SCO re

—4—2 024

Fig. 2a



Analysis of early stage AD revealed that many transcriptional

changes occur before severe pathology develops
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In late AD, many genes were upregulated across all cell types.
Many of these genes were involved in the proteostasis network.
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Shared upregulated genes included molecular chaperones: HSP90AA1, HSPA1A, HSPB1, CRYAB
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 The main cell types were further
divided into sub-clusters.

e Did some cell sub-types contain
more or fewer AD cells
than expected?

e Ex4, In0, Astl, and OIli0 were
associated with AD

e Ex6, In2, AstO, Olil with
absence of pathology



Cell-type sub-clusters
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Ex4 markers expression in AD-pathology subjects
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Expression levels across all excitatory neurons of the

top 10 marker genes for the AD-associated subpopulation Ex4
revealed higher expression in cells from females.



CAMK2N1

LINGO1
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Myelination-related genes were recurrently perturbed not only in
oligodendrocytes and OPCs, but also in most major cell types.

Multiple myelin-related genes were perturbed in neurons:

\PRNB CNTNAP2, ERBIN, NEGR1, and BEX1. Y




Female and male subjects show different cellular responses to AD
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Female and male subjects show different cellular responses to AD

To assess whether a cell type “responds”
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Clinicopathological variables used for the analysis
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Global AD pathology burden (based on 5 regions)

Neuronal neurofibrillary tangles density (8 brain regions,
IHC for abnormally phosphorylated tau)

Neuritic plaque burden (5 regions, silver stain)
Neurofibrillary tangle summary (5 regions, silver stain)
Amyloid-B protein (8 regions, IHC and image analysis)

Last global cognitive function score (average of 19 tests)



Female and male subjects show different cellular responses to AD

Pathological traits
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ARTICLE
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Madhvi Menon™™*, Liang He*4, Fatema Abdurrob'?, Xuegiao Jiang
Brian P Hafler**®*, David A. Bennett®, Manolis Kellis**"* & Li-Huei Tsai'*4!

* sn-RNAseq was able to produce a high-quality dataset from
frozen post-mortem samples from Alzheimer’s patients.

* Known cell types and subtypes were well recapitulated.

 Much of the complexity of AD pathology, especially in early AD, would have
been lost in bulk sequencing.

e Since it was purely descriptive, the study cannot distinguish between
responsive vs. driving changes, that is, neuroprotection vs. pathogenicity.
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A single-nucleus RNA-sequencing pipeline to
decipher the molecular anatomy and
pathophysiology of human kidneys

Blue B. Lake® ', Song Chen'®, Masato Hoshi® 2°, Nongluk Plongthongkum1*3*6, Diane Salamon?4,

Amanda Knotenz, Anitha Vijayanz, Ramakrishna Venkatesh®, Eric H. Kim?>, Derek Gao', Joseph Gautz,

Kun Zhang® ' & Sanjay Jain 2.4



Human kidney samples were collected in two centres

e Washington University:
e Patients undergoing partial or total nephrectomy
e Discarded deceased kidney donors

e University of Michigan:

e Patients undergoing tumour nephrectomies

— Libraries were prepared from 94 patients

— 15 patients were included in the final analysis
(processed using the optimized protocol)



The authors tested various tissue processing methods
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 Whole fresh-frozen tissue proved unsuitable
for snRNA-seq of kidney tissue.

* Nucleiisolated from fresh tissues that were
enzymatically dissociated (with
papain/collagenase or trypsin/collagenase)
were compatible with snRNA-seq.

e However, the best data quality was seen in
samples that were embedded in O.C.T. and
then cryosectioned before isolation of nuclei.



Tissue samples were cut to the right size, cleaned of blood, and
then embedded in optimal cutting temperature (O.C.T.) blocks

B’. Transfer biopsy to

A. Cryomold with OCT to bathe  B. Empty cryomold prechilled A’. Bathe biopsy in OCT - C. Frozen OCT with

. o . hilled Idin B,
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— Storage at -80°C



Next, O.C.T. blocks were cryosectioned (7 x 35 um cryosection rolls)
and collected in tubes containing RNAlater solution

— Storage at -20°C until isolation of nuclei

— >90% success rate



Tissue Processing Pipeline
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Using their optimized
pipeline, the authors
observed better
representation of the
very many kidney cell
types than in previous
scRNA-seq datasets.
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PIEZO2, which encodes a stretch-gated ion channel involved in
mechanosensation, was identified as a new marker of mesangial cells

Mesangial cells are specialized
glomerular pericytes that are
crucial for maintaining
appropriate filtration capacity.

Glomerular cells are under-
represented in scRNA-seq
datasets (Wu et al,

J Am Soc Nephrol, 2019).
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Interestingly, PIEZO2 has recently been identified as a novel hypertension locus.
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e Careful optimization of the protocol is required when applying snRNA-seq to a
new tissue.
 For human kidney, snRNA-seq seems to produce data of high quality:

e Clusters more accurately represent the expected histological composition
compared to scRNA-seq.

e Fewer stress-induced transcriptional changes are observed
(no enzymatic dissociation at 37°C is required).

e Gene detection sensitivity is sufficient.



Thank you for your attention!
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