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Scientific Question and Requirements

 Brain: different anatomical
and functional areas

e Cortical and subcortical

 Extensive, often
bidirectional connectivity

Image: Allen Institute for Brain Science
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Paper 1

NEUROSCIENCE @

Long-range population dynamics of anatomically defined
neocortical networks

Jerry L Chen ™, Fabian F Voigt, Mitra Javadzadeh, Roland Krueppel, Fritjof Helmchen ™
University of Zurich, Switzerland; University of Zurich, ETH Zurich, Switzerland

RESEARCH ARTICLE May 24, 2016

CITED 9 VIEWS 3,347 COMMENTS 1 CITE AS: eLife 2016;5:e14679 DOI: 10.7554/elife. 14679



Long-range population dynamics of anatomically
defined neocortical networks: aim
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Image adapted from: https://doi.org/10.1016/j.neuron.2007.09.017



Long-range population dynamics of anatomically
defined neocortical networks: aim

A From Whisker to Cortex B Whiskers and Barrels D Corticocortical connectivity
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investigate direct interactions between S1 and S2 by simultaneously monitoring
activity in feedforward neurons in S1 projecting to S2 (S1S2) and feedback
neurons in S2 projecting to S1 (S2S1) in mice during tactile whisker behavior

Image adapted from: https://doi.org/10.1016/j.neuron.2007.09.017



Long-range population dynamics of anatomically
defined neocortical networks: experimental strategy
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Long-range population dynamics of anatomically
defined neocortical networks: experimental strategy
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Long-range population dynamics of anatomically
defined neocortical networks: microscope
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Long-range population dynamics of anatomically
defined neocortical networks
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Long-range population dynamics of anatomically
defined neocortical networks




Long-range population dynamics of anatomically
defined neocortical networks: analysis

Calcium Imaging:

- correct for crosstalk between channels
- Background subtraction

- motion correction

- choose ROI manually (= neurons)

- extract mean pixel value of each ROI

- calculate relative YFP/CFP ratio
change according to:

ARIR = (R-R)IR_

Whereby R Is the bottom 8th percentile
of the ratio of a trial

- identify active neurons by two-way
ANOVA of the neuronal calcium signal
against the neuropil



Long-range population dynamics of anatomically
defined neocortical networks: example data
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Long-range population dynamics of anatomically
defined neocortical networks: analysis

Calcium Imaging:

- correct for crosstalk between channels
- Background subtraction

- motion correction

- choose ROI manually (= neurons)

- extract mean pixel value of each ROI

- calculate relative YFP/CFP ratio
change according to:

ARIR = (R-R)IR_

Whereby R Is the bottom 8th percentile
of the ratio of a trial

- identify active neurons by two-way
ANOVA of the neuronal calcium signal
against the neuropil

Neuronal population responses

Linear discriminant analysis
- can be used as a dimensionality
reduction method

- seeks to find a vector representing
maximal separation of two conditions
for each timepoint (represented as LD)

- for whole region analysis, LD values
from all imaging areas/planes were
averaged and then cross-correlated
between regions
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Long-range population dynamics of anatomically
defined neocortical networks
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Long-range population dynamics of anatomically
defined neocortical networks

Task, FAvs. CR
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can be associated with
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behaviour that is
independent of sensory
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Long-range population dynamics of anatomically
defined neocortical networks
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Long-range population dynamics of anatomically
defined neocortical networks
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Long-range population dynamics of anatomically
defined neocortical networks
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This data indicates that S1S2 interactions reflect exchange of sensory
or decision information rather than motor information



Long-range population dynamics of anatomically
defined neocortical networks: Discussion
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Summary:
Simultanous calcium imaging in two
different brain areas

Changes in correlated activity of
projection neurons associated
significantly with sensory input



Paper 2

| etter

Fully integrated silicon probes for high-
density recording of neural activity

James J. Jun, Nicholas A. Steinmetz [...] Timothy D. Harris =

Nature 551, 232-236 (09 November 2017) Received: 27 February 2017
doi:10.1038/nature24636 Accepted: 16 October 2017
Download Citation Published online: 08 November 2017



Paper 2

ENGINEER NEWS IN-DEPTH OPINION SECTORS CA

News Materials Medical & healthcare Medical Devices Neuroscience Sensors

Neuropixels probes promise
new era of brain research

13th November 2017 11:06 am

Humanity may be on the cusp of an exciting new phase of neuroscience thanks to the
development of highly sensitive silicon devices called Neuropixels probes.

This Incredibly Tiny Probe Can Record Brain
Activity Like We've Never Seen Before

It will change what we know about the brain.
DAVID NIELD 10 NOV 2017




Background: Extracellular Recordings

* Voltage changes at electrode site
* Both: Local field potential and
Spikes .
» Spikes: fast frequency ' =
component. Reflects the AP of 7 )%
one or more neurons |AAde 15k
* LFP: slow frequency component. ' : i
Reflects simultaneous activity of
dendrites of similar orientation by W—manH

' Filtered
and geometry TP .

2% s




Background: Silicon Probes

Extracellular electrode = F B

Based on silicone as carrier material o oy

Multiple recording sites | 2 :
LA

Picture from: https://doi.org/10.1016/j.sna.2010.12.019



Neuropixels: goals

To develop a silicon probe with

1) dense and extensive recording sites
2) small cross-sectional area

3) low noise

4) resistance to movement artefacts

5) efficient data transmission

6) long-term recording stability

7) low-cost scalable fabrication



1) dense and extensive recording sites

510 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 3, JUNE 2017

A Neural Probe With Up to 966 Electrodes and Up to
384 Configurable Channels in 0.13 ym SOI CMOS

Carolina Mora Lopez, Member, IEEE, Jan Putzeys, Bogdan Cristian Raducanu, Graduate Student Member, IEEE,
Marco Ballini, Member, IEEE, Shiwei Wang, Alexandru Andrei, Veronique Rochus, Roeland Vandebriel,
Simone Severi, Chris Van Hoof, Silke Musa, Nick Van Helleputte, Refet Firat Yazicioglu, Member, IEEE,

and Srinjoy Mitra, Member, IEEE



1) dense and extensive recording sites

Titanium nitride electrode
CMOS-based

960 electrodes of which
384 can be recorded
simultanously

Bigital &

Bias-.-...-.'.



2) small cross-sectional area
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Connector
for data cable
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5) efficient data transmission
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3) low noise
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3) low noise
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Background: Analysis of extracellular Recordings

Adapted from: http://www.scholarpedia.org/article/File:QQ_Figl.jpg and
from lecture on extracellular recordings in BIO434 course 2013 by Asli Ayaz


http://www.scholarpedia.org/article/File:QQ_Fig1.jpg

Recording from large neuronal populations with a
single probe in an awake head-fixed mouse
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Recording from large neuronal populations with a
single probe in an awake head-fixed mouse
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Recording from multiple brain structures in awake

head-fixed mice.
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Recording from multiple brain structures in awake
head-fixed mice.

Visual stimulus
— (—  — | E— | —  (— | —  —

Visual cortex JEisretrmir. o' Boinloyad i bkl . !
(= 70) e

. Hlppﬂcampus W TN S Tis S St Mo s

....-. L III--..‘.... -  § . 1 - ._1.- -__q ..- o
Jm '-lul.nJ- _I--..|.|l-'- LT 530 i- ulllll—.l"ﬂtlr'—hll.lll,.r.l.._ S |._.|.I|..|l|l|l|l|.-

e
e e LG Sl W M W A '. .

'-.—"E:-Lﬁfﬂ_if 'H:.t'ﬁ_ e T...:If_"._'r‘._.f_'_-l .:r'-.ﬂ-' --Eﬂ..




Recording during optogenetic stimulation of
excitatory and inhibitory cell populations

Rorb-Cre; Ai32 (ChR2-EYFP)




Recording during optogenetic stimulation of
excitatory and inhibitory cell populations
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4) resistance to movement artefacts
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Recordings from entorhinal and medial prefrontal
cortices using chronic implants in unrestrained rats
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6) long-term recording stability
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Neuropixels: Summary

To develop a silicon probe with

1) dense and extensive recording sites

2) small cross-sectional area No demonstration of
3) low noise new insights (yet)

4) resistance to movement artefacts

5) efficient data transmission

6) long-term recording stability

7) low-cost scalable fabrication



Neuropixels: Summary

To develop a silicon probe with

1) dense and extensive recording sites

2) small cross-sectional area No demonstration of
3) low noise new insights (yet)

4) resistance to movement artefacts

5) efficient data transmission

6) long-term recording stability

7) low-cost scalable fabrication

Commercially
available sometimes in
2018. We'll see....




Side by side comparison

Anatomical information good Limited (only post-hoc)
Cell type specificity possible limited

Temporal resolution Slow (Hz) Fast (kHz)

Access to deeper brain limited easy

regions

coverage limited large

Head-fixation Usually needed Not necessarily needed

price Very expensive expensive



Summary and Outlook

Both methods provide functional
data on neuronal activity

Method should be chosen based
on experimental requirements
regarding anatomical / temporal
resolution, cell type specificity
etc

If possible, interventions to
disrupt the proposed circuitry
function should be applied



Conclusion and Outlook

Both methods provide functional
data on neuronal activity

Method should be chosen based
on experimental requirements
regarding anatomical / temporal
resolution, cell type specificity
etc

If possible, interventions to
disrupt the proposed circuitry
function should be applied

In the future, the spatial
resolution of the silicon probes
might be further improved, as
well as the temporal resolution of
calcium imaging

More sophisticated data analysis
methods will be available



Thank you




Appendix: Ycnano — yellow cameleon ratiometric
calcium indicator
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Appendix: CMOS

Complementary metal-oxide—semiconductor,

vdd
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Appendix: all probe options

Option 1 Option 2 Option 3 Option 4

Site Count 384 384 960 966
Channel count 384 384 384 276
Electrode type Passive Active Passive Active
Shank power (mW) 0 1.31 0 1.31
Base power (mW) 17.5

Electrode area (umz) 144

Crosstalk (at 1kHz) <5%

Gain selectable from 50 - 2500

AP band high-pass corner (kHz) selectable from 0.3 - 1.0

AP band low-pass corner (kHz) 10

LFP band high-pass corner (Hz) 0.5

LFP band low-pass corner (Hz) 1000

AP band sampling rate (kHz) 30

LFP band sampling rate (kHz) 2.5

AP band noise (uV r.m.s.) 57%0.8 6.6+ 0.8 55+0.7 6.6%£2.5

LFP band noise (uV r.m.s.) 96+58 13.0+28 80%25 102419
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