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antigen recognition by T cells

TCR
T cell receptors (TCR) are the antigen-recognition molecules of T cells

TCRs are related to immunoglobulins but differ in protein structure, mechanism of
variability production but most importantly in antigen recognition: short peptides
instead of antigens presented as MHC molecules

MHC

MHC (major histocompatibility complex) molecules: highly polymorphic transmembrane
glycoproteins that are encoded by different alleles

TCRs recognize both the peptide antigens and the MHC molecules to which they are
bound — only when they are displayed on the surface of a cell

infected cells display peptide fragments of the pathogen’s proteins on their surface



antigen-binding
site

antibody

structure of the TCR

antigen-binding
site

a TCR has only 1 antigen-binding site, whereas a B-cell receptor has e

2, and TCRs are never secreted, whereas immunoglobulins can be z HIZB e
secreted as antibodies “ B

each T cell bears about 30,000 antigen receptor molecules on its ol
surface

each TCR is composed of two transmembrane glycoprotein chains, a
and B, similar to a Fab

carbohydrate

a chain B chain

a minority of T cells have y:0 TCRs (different antigen recognition
properties)

L variable
region (V)

- constant
region (C)

T stalk segment

| transmembrane
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MHC molecules bind many different peptides

MHC class | MHC class Il

HLA-A, HLA-B, and HLA-C HLA-DP, HLA-DM, HLA-DOA, HLA-DOB, HLA-

: : DQ, and HLA-DR
peptides from pathogens (viruses)
to CD8 cytotoxic T cells CDA4 T cells — activation of B cells, macrophages

almost all cells express MHC | and dendritic cells

in the brain, most cell types are MHC class II-
negative, but microglia are MHC class Il-positive

MHC class lll (does not contain any HLA genes)

complement components C2, C4, and factor B
tumor necrosis factor (TNFa)

heat shock proteins



genetic structure of the MHC

E"m’"‘““’”‘” 2 P23 : the human MHC region, also
-7 AN referred to as the HLA region
e N (pink), is located on the short
-7 . arm at position p21.3
Tﬂmuégp H;EM LMP/TAP H'L§1:|q :L:D: C4B C44 LTB TNF LTA HLA-B HLA-C I-I.:J; the MHC reglon .SpanS 3-6
0000 B80I=00-000-00—000—8-4 1 megabases and includes more
Y Y Y than 200 genes
Class II Class 111 Class I

MHC class | & [l molecules are the most immunogenic antigens that are recognized during rejection
of an allogeneic transplant

autoimmunity is linked to specific HLA alleles:
type 1 diabetes mellitus to HLA-DQ2 and HLA-DQ8
multiple sclerosis to HLA-DR2
myasthenia gravis & grave’s disease to HLA-DR3
rheumatoid arthritis to HLA-DR4



timeline of MHC discovery

1920 Tyzzer and Little:
recognition of graft as
self or foreign in mice is
an inherited trait

() ()

1936 Peter Gorer:
discovered the antigen
Il on mouse
erythrocytes

1944 Peter Medawar:
rejection of skin
allografts in rabbits were
the result of an immune
response

() ()

1948 Gorer, Lyman & Snell:
landmark discovery on the
gene encoding for antigen |l
controlling graft acceptance
(H2-histocompatibility)

Nobel price 1980

1956 P Medawar:
“actively acquired
tolerance” in mice and
chickens

Nobel price 1960

() ()

1974 R Zinkernagel & P
Doherty: “MHC restriction” T
cell recognition of viral
antigens in mice is restricted
by MHC molecules

Nobel price 1996



HLA and susceptibility to disease

HLA polymorphisms:

shape the T-cell repertoire diversity
influence antigen processing and presentation (foreign or self-peptides to autoreactive T cells)
determine which peptides to bound and present to the immune system

can generate molecular mimicry between self-antigens and either the HLA molecule itself or peptides
that it recognizes

affect immune suppression and cancer development through the loss of HLA gene expression (viral
infection, somatic mutations)



cytotoxic T-cell response

cytotoxic T cells use TCRs to survey antigens presented on MHC class | on the surface of cells

TCR recognition of MHC-antigen complexes — elimination of pathogens by cytolytic molecule or
cytokine secretion. Examples: HIV, CMV, malaria, SARS-CoV2

cross-reactive T cells

number of distinct TCRs are estimated at 105-108, but they recognize a far greater number
(>107%) of possible foreign antigens

robust immunity but may also contribute to autoimmune diseases and cancer immunotherapy
toxicities



studying T cell specificities

challenges of studying TCR-pMHC interactions
interaction of TCR to MHC is of low affinity

T cell antigens are short peptides non-covalently bound to MHC molecules

predetermined
classic approaches antigens (up to 100)

—_

PMHC tetramers; fluorescently labeled streptavidin molecule bound to 4 biotinylated pMHC
monomers

PMHC dodecamers

T cell cytotoxicity/proliferation assays in the presence of antigens _

immunoprecipitation/mass spectrometry
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Fig. 3: Clonal expansion of CDS* Tgyga cells in the CSF of patients with AD. Fig. 4: Antigen identification of clonally expanded TCRs in the CSF of patients
with AD.
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evaluate TCR cross-reactivity

provide new insights into TCR-
PMHC interactions

strategies for characterizing the
safety of T-cell immunotherapies
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PMHC tetramers coupled to DNA barcodes to analyze TCR binding to more than 1,000 different
antigens in a sample

both groups used ultraviolet-cleavable conditional ligands to make large numbers of pMHCs
and overcome the time-consuming process of making individual pMHCs

Bentzen et al. applied their DNA- Zhang et al. synthesized the peptides
barcoded pMHC multimer from DNA oligonucleotides through in
technology to study TCR cross- vitro transcription and translation
reactivity and recognition patterns, by (reducing cost & time) compared to

using peptide synthesis synthesizing peptides chemically



two similar methods for assessing T cell-

PMHC binding patterns

Zhang et al. (a):

tetramer-associated TCR sequencing
(TetTCR-seq)

the oligonucleotides that encode
antigenic peptides are also used as DNA
barcodes, which are conjugated to the
fluorescent streptavidin coupled to the
pMHC tetramers

they tested the method using pMHC
tetramers made with a WT hepatitis C
virus peptide and 4 related altered
peptide ligands in conjunction with
peripheral human CD8 T cells and a
spiked-in WT peptide-reactive T-cell
clone

DA oligonuclectides Library of fluorescent, TCR—pMHC fetramer Sequencing identifies both the
sarve 85 barcodes and DMA-barcoded peplide—MHC binding is measurad TCGRH and the peplide-binding
also encode peplides teframers is ganerated for single T calls specificities for sach T call

WL -
L =
(0 =
LD =

Mutant peptide-bownd MHC Library of fluorescent, TCR—pMHC multimer Sequencing determines the
multimers are DMA-barcoded mutant peptide—MHC binding is measured in relative abundance of different
conjugated 1o individual multirmears is ganarated budk for a TCR of interast T-cell-bound mutant peplides

DMNA barcodes
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a set of peptide-encoding
oligonucleotides that serve as both the
DNA-BCs are used to identify antigen
specificities and as DNA templates for
peptide generation via IVTT

tetramer-stained cells are single-cell
sorted and the DNA-BC and TCR genes
amplified by RT-PCR

high peptide diversity in the foreign-
antigen-binding naive T cells: two
dominant peptides for CMV and
influenza in the non-naive repertoire

TCRa genes dominated in MART1-A2L-
and YFV-LLW-specific TCRs
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the TetTCR-seq method:
links TCR sequences with multiple antigenic pMHC binders in a high-throughput manner

identifies functionally relevant neoantigen-specific TCRs with no cross-reactivity to wild-type
antigens, and identifies cross-reactivity patterns in neoantigen-specific TCRs

can be integrated with single-cell transcriptomics and proteomics to gain further insights into
the connections between a single T cell phenotype and TCR sequence/pMHC-binding



two methods for assessing T cell-
PMHC binding patterns

? DMA clgonuclectides
sarva as barcodes and
also encodae peplides

Bentzen et al. (b):

WL -
TCR recognition pattern characterization i =
on pMHC interactions: “fingerprinting” IO -
based on the group's earlier work on LY =

developing DNA-barcoded pMHC
multimers, they identified low-frequency
CD8 T cells as well as neoantigen- _

b Mutant peptide-bound MHC
specific T cells SoRliced b o

DNA barcodes

they mutated every amino acid position

of two HLA-bound polyomavirus peptides ——— ,
to all naturally occurring amino acids (191
for each peptide) and then tested the
peptides in bulk for binding to two TCRs
isolated from patients with Merkel cell
carcinoma
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characterized recognition patterns of two
different TCRs isolated from patients with
Merkel cell carcinoma each recognizing a

different peptide:
1. APNCYGNIPL, restricted to HLA-
B*0702

2. EWWRSGGFSF (EWW), restricted
to HLA-A*2402

DNA barcode sequencing showed an
affinity-based hierarchy of pMHC
interactions with the TCRs

amino acid residues critical for binding
were identified for both peptides
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recognition patterns of different TCRs to the
same target: two murine transgenic TCR
cell lines, OT-1 and OT-3, which are known
to have high and low functional avidity,
respectively, to the SIINFEKL peptide

screened with a library of 153 DNA barcode-
labeled MHC multimers with a single aa
substitution

12 different TCRs derived from four patients
with MCC

variance in the TCR fingerprints of these
TCRs, even among those derived from the
same patient; however there was
preference pattern for position 5
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the DNA barcode sequencing revealed an affinity-based hierarchy of pMHC interactions with
the TCRs, and amino acid residues critical for binding were identified for both peptides

this highlights the utility of the technique to analyze multiple TCR—pMHC interactions, as in
the method described by Zhang et al.

mutations in peptide 'anchor’ residues did not hinder peptide—-MHC interactions as predicted,
suggesting that these residues do not have a major role in TCR recognition
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T scan platform workflow
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the platform employs a cell-based pooled screen to
identify the cognate antigens of T cells

target cells express a library of lentivirally delivered
candidate antigens that are processed and presented
endogenously on MHC molecules

PCR and NGS to identify the antigens that these cells
are programmed to express

a GzB reporter is used to detect the target cells that
receive these cytotoxic granules and to enable their
isolation by FACS

GzB activity is used to isolate target cells functionally
recognized by a T cell

IFPSZB, an infrared fluorescent protein (IFP)-based GzB
is activated in cells co-cultured with cytotoxic T cells in
the presence of a cognate antigen



apoptotic cell identification
(EDCs)

GzB delivery into cells results in the activation of
caspases and apoptosis:

caspases cleave the inhibitor of caspase-
activated DNase (ICAD) protein, releasing active
CAD nuclease which fragments genomic DNA

expressed a caspase resistant version of ICAD
protein, in the target cells to prevent genomic
DNA fragmentation during apoptosis, enabling
more efficient recovery of antigen information
from the genomic DNA of GzB-positive cells

epitope discovery cells

CRISPR:

« mutated all 6 endogenous HLA-A, HLA-B,
and HLA-C MHC-encoding genes and re-
expressed the individual HLA allele of
interest

» these cells express IFPGZB and ICADCR
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Library EDCs

Virome-wide library

Protesmis of 208 virsl
| s

”~ Y

¥~

T-Scan co-culture

virome-wide T cell antigen discovery .

Gene A, Gene B, 1o,

f I-:. C
. . . v 5::1 Target u-a\z-:- & M‘:{“"I‘m 56 aming
virome-wide screen for far larger numbers of candidate T
antigens (proteome-wide peptide library from all human
. B 80
viruses)
@ Pppes
jor 2a477-532 R
a library a library of 93,904 56-aa fragments that tiled across 50| !
the entire human virome £ 50| :
£
. . . g . . = 40+ ]
same previously identified peptides popped up together with 5 Rl
two novel 56-mers from the IE1 gene of CMV e o 161 305364 ’
20} -
the NLV-expanded T cells, but not the NLV3 TCR-transduced ol S )
®
T cells, were reactive to the IE1 peptides . " .
0 20000 40000 60000 80000 100000
Cc Peptide number
Gene Fragment Peptide
ppﬁS 449-504 GYVMTRGRLEAESTWAPEEDTDEDSDNEIHNPAVFTWP PWOAGILARNLYPMVATV D
ppﬁs 477-532 HNEAVFTWPPWOAGILARNLYPMVATY OGONLEYOEFFWDANDIYRIFAELEGV WO
IE1 281-336 ETMCMNEYKVTSDACMMTIMYGGISLLSEFCRVLCCY VLEETSWMLAKRELITKEEVI
IE1  309-364 CRVLCCYVLEETSVMLAKRPLITKPEVISYIMKRRIEEICMEVFAQYILGADPLRVE
NLV3 MNLV-expanded ) .1:'?-“ o
-F 35" %
$3 E:ﬁm E |
it i, D £

w47
T
LY w? w et

MLV tetramer (PE)



A Sbmer mutants Short peptide mutants Cantrols

epitope mutagenesis e

LERES | LI -] i £
LCAGILARNLVPMVYATVOGONLE. . NLVPMVATV*
[ l 1266 unrelated
:l =l peptides
(=] m~
fn N
N e
ES e —
® [ —
247 mutant peptides 171 rutant peptides

use of a single mutant library of the NLV epitope, with each
mutant epitope present as a 56-aa fragment and a 9-aa fragment

1,688 peptide tiles encoded with two nucleotide sequences each for a total of 3,376 reagents

NLV-expanded T cells c MLW2 TCR

- |

set of 418 mutants
mutant library was transduced into cells expressing HLA-A2

NLV-expanded T cells

4fcqumBAITEem oo mmOn®

afcaumbazTErmozommOon®

most mutations abrogated T cell killing:

D MLVE TCR E
. Yy . : “ : 3:%’ =] W MLVZ TOR =i

almost all mutations at position one were tolerated, while any ey o 2 DNRTeR .
substitution at position four and five prevented recognition i : Eg’* f z

ey B )

5 ? Wr vi:&i;;i:c:ch u{nhﬁ:qi;jﬁr:{n

Feptide
P G
15 - [V (negative cantrol)

P 3 : = - MNLYWT
= NLWL2A
= NLYL2C

reporter actvation

Percant GzB

1 T T T T 1
0N 1M 100 10RM 1AM 100aM
Paptide concentration

afcaumbaTErmoTommOon®



human genome-wide T cell antigen discovery

applications of T-scan in anti-tumor immunity: genome-wide
screen using a tumor-derived TCR specific for an HLA-A1-
restricted epitope of MAGE-A3

a library of 259,345 antigens that tile across the entire human
proteome in 90-aa fragments with 45-aa overlap into EDCs
expressing HLA-A1

CD8 T cells were transduced with the MAGE-A3 TCR

enrichment of only 8 antigens in the library, which encoded 4
sets of overlapping peptides

identified epitopes with a single leucine to valine substitution

same ExDP motif
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T cell immunity in COVID-19 with T-scan

Unbiased Screens Show CD8* T Cells of COVID-19 Patients
Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside
outside the Spike Protein
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COVID-19

-scan main findings

CD8* T cells from
COVID-19 patient
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Identification of CD8* T cell epitopes in five HLA-A*01:01 patients
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Most epitopes lie outside the spike protein
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determined the precise peptide
sequences in SARS-CoV-2 that are
recognized by the memory CD8 T cells of
COVID-19 patients

identified 3—8 epitopes for each of the 6
most prevalent HLA types

CD8 T cells generally did not cross-react
with epitopes in seasonal coronaviruses
that cause the common cold



genome-wide screen for CD8 T cell
epitopes in SARS-CoV-2

CD8 T cells were co-cultured with a genome-wide
library of target cells engineered to express a single
HLA allele

Each target cell in the library also expressed a unique
coronavirus-derived 61-amino acid protein fragment

Early apoptotic cells were enriched by MACS with
Annexin V, followed by FACS with the fluorescent
reporter. This modification increased the throughput of
the T-Scan assay 20x and enabled rapid processing of
a large number of samples

A CD8+ memory T cells

o

.................. seececetacasaaaaaer \

Genome-wide library of target cells

Class | peptide GzB-activated |
’ Z Tf z $ Class | MHC “
“
+ 2 : : g 61-aa )

Proteasome””

scramblase
s

GzB-activated
fluorescence J

2. Enrich

4. Sequence (NGS)

$ (? :O; (Annexin V MACS) .

Fold-enrichment
- N [ »
o o o o

o

Fold-enrichment
- N w £
o o o o

o

Pre-apoptotic cells

3. Purify (FACS)

Purified
target cells

SARS-CoV-2 (104 sequenced isolates), SARS-CoV, HKU1, OC43, 229E, NL63

ORF2

o ORF1

(—
'
—

20-aa steps

» Each clone expresses a 61-aa protein fragment (tile)
« Each tile is represented 10 times (DNA bar-coded)
« Library contains 43,420 total clones
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most shared CD8* T Cell epitopes lie outside of the spike
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= only 3 of the 29 epitopes are located in the S protein. Most epitopes (15 of 29)

are located in ORF1ab, and the highest density of epitopes are located in the N
protein



summary

T cell scan:

= enables the interrogation of highly complex epitope sets in a high-throughput manner

» unbiased approach to characterize antigens

= can be adapted to identify new targets in autoimmunity (autoreactive antigens)

= allows for a rapid discovery of novel antigen targets in viral infections, as well as in cancer
immunology (solid tumors included)

» |astly, it can identify off-targets in cancer immunotherapy that lead to toxicity

limitations:
= genetic information and encoding of candidate antigens must be available
= some targets might be missed (e.g. lipids)

= endogenously expressed antigens by the EDCs cannot be screened



Thank you for your attention!
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