# Approaching the underlying molecular mechanism of aging Non-canonical model system of aging

Journal Club on Lab Animal Science

Regina Reimann



### Aging / Senescence: A risk factor for death



www.senescence.info

- 1. Exponential increase in mortality with age
- 2. Physiological changes, typically leading to a functional decline with age
- 3. Increased susceptibility to certain diseases

## Why do we age? - Theories of aging.

### 1. Programmed Senescence

# Birth Reproduction Senescence Maximal lifespan Humans 13.5 yrs >40 yrs Monkeys 4.5 yrs >20 yrs Mice 0.12 yrs >1 yr

Aging occur on a fixed schedule triggered by the genetic program.

### 2. Damaged based theory of aging



Continuous process of damage accumulation originating in by-products metabolism.

### **Comparative biology of senescence**



www.senescence.info

- Body size correlates with lifespan between species: larger animals live longer than smaller animals
- Brain mass correlates with tmax / in some case the size of other organs correlate
- Metabolic rate (questioned)
- Age at sexual maturation

### Canonical models of senescence

#### Yeast



https://d3pddo38v7j30h.cloudfront.net /blog/wpcontent/uploads/2010/12/yea st-cells-web.jpg

#### C. elegans: 2-3 weeks



https://en.wikipedia.org/wiki/Caenorhabditis elegans

#### Drosophila: 2 months



https://en.wikipedia.org/wiki/Drosophila\_m elanogaster

#### Mouse: 3 years



https://simple.wikipedia.org/wiki/Mouse

### Limitation of canonical models:

- Yeast: no studies on multicellular and systemic aging.
- Nematode worms and flies: post-mitotic (no stem cell function and cancer) and lack an adaptive immune system.
- Mouse: commands considerable time and resources for lifespan studies.

### Non-Canonical models of senescence

Short-lived: 4-5 month.

Turquoise killifish Nothobranchius furzeri

- · Shortest-lived vertebrate in captivity
- Wide set of aging phenotypes including cancer
- Sequenced genome
- Efficient transgenesis

**Immortal** 



Planarian Schmidtea mediterranea

- · Potentially immortal lifespan
- · Pluripotent adult stem cell
- · Capable of whole body regeneration
- Can perform RNAi screens

Long-lived: 31 years.



Naked mole-rat Heterocephalus glaber

- Exceptionally long-lived
- · Resistant to cancer
- Resistant to age-related diseases
- · Breeds in captivity, sequenced genome

## The hallmarks of aging



### Cellular senescence

A stable arrest of the cell cycle coupled to stereotyped phenotypic changes

- Replicative senescence: telomer shortening
- Developmentally programmed senescence
- SIPS: stress-induced premature senescence
- OIS: Oncogen induced senescence



www.senescence.info

SIPS: stress-induced premature senescence



### Naked mole rat: secret of a long and healthy live



Valenzano et al, 2017

- Higher protein stability
- Less increase in cysteine oxidation
- Higher level of cytoprotetive NRF2 signaling

#### Cancer inhibition

- Early contact inhibition
- p15/p16 hybrid
- High translation fidelity

### Cellular senescence:

- No display of replicative senescence
- Expression of telomerase in somatic tissue

→ Other forms of cell senescence (SIPS, OIS, developmentally programmed senescence)?

## SIPS: Developmental programmed senescence in naked mole rats (NMR)



Senescence-associated  $\beta$ -galactosidase (SA- $\beta$ -gal) staining.

β-galactosidase: Lysosomal hydrolase normally active at pH4, but it senescent cells it often happens o be activated at pH6.

### SIPS: Oncogene-Induced Senescence



Transfection with:

• HRasV12: oncoprotein

Control: GFP

MEF: mouse embryonic fibroblast

MSF: mouse skin fibroblast

NEF: NMR embryonic fibroblast

NSF: NMR skin fibroblast





White: control Black: HRasV12

Oncogene-induced senescence, quantified by SA-β-gal.

Reduction in DNA synthesis, quantified by BrdU staining.

### Attenuated senescence in response to γ-irradiation



MEF: mouse embryonic fibroblast

MSF: mouse skin fibroblast

NEF: NMR embryonic fibroblast

NSF: NMR skin fibroblast



 $\gamma$ -irradiation induced senescence, quantified by SA- $\beta$ -gal.



Reduction in DNA synthesis, quantified by BrdU staining.

White: control Grey: 10 Gy Black: 20 Gy

## Attenuated senescence and apoptosis in response to γ-irradiation - II



Annexin V FACS apoptosis assay



White: control Grey: 10 Gy Black: 20 Gy

P21: Cell cycle arrest in response to  $\gamma$ -irradiation.



DNA damage quantified with Comet assay

## Gene expression change in the NMR upon γ-irradiation are less drastic, but more systematic.



- Two times more differentially expressed genes mouse vs NMR fibroblasts
- More pathways enriched in NMR vs mouse fibroblasts
- Shared pathway alterations: immune response, cell cycle, DNA replication, translation, ribosome protein genes
- NMR unique down-regulation: transcription, spliceosome, mitochondrial translation
- NMR unique up-regulation: protein and glycoprotein metabolism, lipid metabolism, lysosomes, extracellular matrix and oxidative stress response.

### Functional enrichement of changes

- 20 Gy of γ-irradiation versus untreated
- RNA collection 12 d later (all irradiated cells displayed positive SA-β-gal staining)
- RNAseq, three biological replicates
- Uniform annotation of genes between species, 10959 gene coverage

## Conclusion from comparative analysis of senescence between mice and NMR



## Turquioise killifish: live fast, die young



### Aging phenotypes



- Decline in reproduction
- Decline in fertility
- Decline in cognition
- Decline in mobility
- Decline in regeneration and tissue homeostasis
- Neural and muscular degeneration
- Cancerous lesions
- Multiple cause of death

### **Localisation of TH+ positive neurons and fibres**



Coronal sections at different rostro–caudal levels show the localization of TH+ fibers and neurons in N. furzeri (3 month-old). / TH+: Tyrosine hydroxylase (to detect dopaminergic and noradrenergic neurons)

### **Degeneration of TH+ positive neurons**



### **Progression of α-Synuclein pathology**





N. fuzeri  $\alpha$ -synuclein antibody: peptide / rabbit







### Progression of $\alpha$ -Synuclein pathology



Immunoblot anaylsis of SDS-insoluble fraction.

Dot-blot analysis of  $\alpha$ -Synuclein fibrils in the brain.

### Passage of α-Synuclein seeds from Turquoise killifish to Zebrafish





## Passage of $\alpha$ -Synuclein seeds from Turquoise killifish to Zebrafish





### **Rescue experiment-I**



Generation of 20 bp deletion in the exone of  $\alpha$ -Synuclein (CRISPR-Cas9).

Western blot / immunohistochemistry: no expression







α-synuclein

β-actin

WT KO

### Rescue experiment-II









## Summary: Dopaminergic degeneration in the Turquoise killifish



- Annual killifish reveals age-dependent degeneration of dopamine neurons
- Aged killifish shows accumulation of  $\alpha$ -Synuclein in the brain
- Dopamine neurodegeneration is ameliorated by genetic depletion of  $\alpha$ -Synuclein

## Efficient genome engineering approaches for the Turquoise kilifish



### Artificial intelligence for aging and longevity



Application of artificial intelligence of aging for biomarker development and target identification (at different levels).

## Thank you for your attention!



¶

#### MONITORING-SHEET-FOR-PRION-INOCULATED-MICE-#

 $\alpha$ 

 $\Box$ 

 $\alpha$ 

CHECKED-BY:-¤ DATE:¤

| Ħ       | Ħ        | Ħ           | Ħ                     | Ħ           | body·weight·(g)¤ |                 | Neurological·Scoring¤ |    |            | comment |
|---------|----------|-------------|-----------------------|-------------|------------------|-----------------|-----------------------|----|------------|---------|
|         |          |             |                       |             |                  |                 |                       |    |            |         |
| cage∙#¤ | mouse∙#¤ |             | inocul.·datex         |             |                  |                 | Α¤                    | B¤ | Total·(T)¤ |         |
| ۵¤      | ۵¤       | β           | °μ                    | β           | °¤               | β               | ٩                     | β  | Ħ          | °¤      |
| °¤      | °¤       | °¤          | °¤                    | °¤          | °¤               | <sup>9</sup> ti | ٩                     | β  | ী          | °¤      |
| °¤      | ٥Ħ       | °¤          | °¤                    | °¤          | °¤               | °¤              | ٩                     | β  | Ħ          | °¤      |
| °¤      | ٥Ħ       | °¤          | °¤                    | °¤          | °¤               | <sup>9</sup> ti | ٩                     | β  | 'n         | °¤      |
| ۵Ħ      | ٥Ħ       | °¤          | °¤                    | °¤          | °¤               | °¤              | ٩                     | ٩  | ীয         | °¤      |
| cage∙#¤ | mouse∙#¤ | mouse·line¤ | <u>inocul</u> .∙date¤ | researcher¤ | reference-3      | weight¤         | Α¤                    | B¤ | Total⋅(T)¤ | å       |
| β       | ۵¤       | °μ          | p°                    | β           | β                | β               | æ                     | æ  | ਖ          | °¤      |
| β       | ٥Ħ       | °¤          | °¤                    | °¤          | β                | <sup>9</sup> t  | ά                     | ά  | শ্ব        | °¤      |
| ۵¤      | ٥Ħ       | °¤          | °¤                    | °¤          | β                | °¤              | β                     | β  | শ্ব        | °¤      |
| ۵¤      | ٥Å       | °¤          | °¤                    | °¤          | β                | β               | ά                     | β  | শ্ব        | °¤      |
| ٥Ħ      | ٥Å       | °¤          | °¤                    | °¤          | β                | °pt             | β                     | ٩  | শ্ব        | °¤      |
| cage∙#¤ | mouse∙#¤ | mouse·line¤ | inocul.·datex         | researcher¤ | reference-3      | weight¤         | Α¤                    | B¤ | Total⋅(T)¤ | °¤      |
| ۵pt     | ۵pt      | °¤          | °¤                    | °μ          | β                | β               | ٩                     | ά  | 'n         | °¤      |
| ۵Ħ      | ٥Ħ       | °¤          | °¤                    | °¤          | β                | β               | ٩                     | ά  | Ή          | °¤      |
| ۵pt     | ۵å       | °¤          | °¤                    | ٩           | β                | <sup>9</sup> t  | ٩                     | β  | 'n         | °¤      |
| ۵Ä      | ٥Ħ       | °μ          | °¤                    | °μ          | °¤               | °¤              | ď                     | ά  | °μ         | °¤      |
| ۵ä      | ۵å       | ٩           | °¤                    | β           | β                | <sup>®</sup> #  | β                     | β  | 'n         | °¤      |
| cage·#¤ | mouse∙#¤ | mouse·line¤ | inoculdatex           | researcher¤ | reference-3      | weight¤         | Α¤                    | B¤ | Total⋅(T)¤ | °¤      |
| ٥Ħ      | ٥Ħ       | °¤          | °¤                    | °¤          | °¤               | °¤              | ٩                     | ٩  | ង          | °¤      |
| ۵pt     | ۵pt      | °¤          | °¤                    | °¤          | °¤               | °¤              | ٩                     | ٩  | °μ         | °¤      |
| ۵pt     | ۵å       | °¤          | °¤                    | β           | βt               | β               | β                     | β  | 'n         | °¤      |
| ٥Ħ      | ٥Ħ       | °¤          | °¤                    | °¤          | β                | β               | ٩                     | ά  | Ή          | °¤      |
| ۵pt     | ۵å       | °¤          | °¤                    | ٩           | β                | <sup>9</sup> t  | ٩                     | β  | 'n         | °¤      |
| cage·#¤ | mouse·#¤ | mouse·line¤ | inocul. datex         | researcher¤ | reference-3      | weight¤         | Α¤                    | B¤ | Total⋅(T)¤ | °¤      |
| ۵pt     | ٥Ħ       | °¤          | °¤                    | °¤          | β                | °¤              | ٩                     | ٩  | ង          | °¤      |
| ۵ħ      | ٥Ħ       | °¤          | °¤                    | °¤          | °¤               | °¤              | ٩                     | ٩  | °μ         | °¤      |
| ۵pt     | ٥Ħ       | °¤          | °¤                    | °¤          | β                | °¤              | ٩                     | ٩  | °μ         | °¤      |
| ۵pt     | ٥Ħ       | °¤          | °¤                    | °¤          | β                | °¤              | ٩¤                    | ٩  | ង          | °¤      |
| ۵¤      | ۵pt      | °¤          | °¤                    | °¤          | <sup>9</sup> ¤   | °¤              | °¤                    | ٩  | °ta        | °¤      |