TANGO: protein interactions traced in cells and animals

11/04/17

Technical Journal Club
Kristina Airich

Tango

- Two proteins have to be associated to stimulate, its called TANGO
- Assay for protein-protein interaction: fusion of receptor with transcription activator
- Cleavage site (specific viral protease): Gene codes for fusion of protease with protein that activates receptor
- Adapting signaling events transformed to stable responses
- Monitor activity of different receptor classes: GPCR, Tyrosine, Steroid Hormone Receptor...

Tango: Notch receptor

Based on Notch receptor: Ligand triggers cleavage in receptor → releases notch intracellular domain that translocates to nucleus → modulates transcription of target genes.

Tango: GPCR

Receptor stimulation with agonist and antagonist followed cell transfection with the AVPR2 (vassopressin Rec)-TEV cleavage site (TCS)-tTA and arrestin-TEV fusions

Tango: Tyrosine Kinase Rec

- Insulin-like growth factor 1 receptor interacts with Shc1 (PTB domain adaptor protein)
- Cell line containing tTA-responsive reporter gene IGF1 ligand binds
 - Ligand → Phosphorylation Rec (PTB domain of shc1) → Shc1 recruited-TEV

Tango: Transmembrane and intracellular receptors

Transmembrane and intracellular receptors can be monitored (interaction of two receptor proteins) Estrogen binds → Dimers formed, enter nucleus, interact with DNA response elements and target gene transcription

Tango: optimizing sensitivity

Fusion gene (AVPR2 tail) extends the Tango assay to receptors that weakly recruit b-arrestin molecules upon activation and has allowed us to develop assays for 89 GPCR family member

Vision in Drosophila

- Research failed to identify color opponent neurons in the optic lobe. Behavioral studies have not provided convincing evidence for color vision in the fly.
- Color vision requires the ability to distinguish light of distinct spectral composition independent of intensity
- single photoreceptor cannot distinguish different wavelengths from different intensities of light
- → Interesting to understand how a single photoreceptor can "see" colour

Tango-Trace: Ommatidium

- The R7 and R8 cells project axons to the same column (medulla) and the topographic organization of the columns maintains retinotopic order
- Drosophila has phototactic (movement) preference for UV light vs green light (preference gone
 if R7 is blocked)

(Otsuna, 2014)

Tango-Trace: core with eight photoreceptor neurons

- R1-R6: achromatic neurons
- R7,8: chromatic neurons
- p/y R7,8: 4 types of inner photoreceptors: R7 (UV-sensitive rhodopsin Rh3 and Rh4:yellow) and R8 (blue-sensitive Rh5;Rh6: green)

 Connections of 4 inner photoreceptors unidentified and projection of different ommatidia to what circuits?

(Clandinin, 2002)

Tango-Trace: GFP

Photoreceptor neurons use histamine (HA) as NT

In Drosophila HA can be detected by using Tango-Trace: Expression of histamine receptor (human, HRH2, a GPCR)

Generate animals expressing: HRH2-TCS-Gal4 and Arr-TEV under the control of the tubulin promoter (Tubp) and reporter construct UAS mCD8-GFP

→ visualization of their cell bodies and axonal and dendritic projections

Ligand interaction results in stable transcriptional readout

Tango-Trace: light dependent labeling

- Animals exposed to histamine should express CD8-GFP
- First darkness → Exposed 10s light flashes (3mins)
- → 16hr later whole mount Immunohistochemistry (AB against GFP): cell bodies and axonal projections visualized in lamina and medulla
- Second fusion protein: TEV protease linked to b-arrestin
- Ligand → b-arrestin recruited → cleaves TCS→ Gal4 in nucleus → UAS bound to GFP

C Lamina Medulla Lobula Plate

Tango-Trace: Quantification of fluorescence (CD8-GFP)

- Dark- reared flies and flies reared in ambient light exhibited significantly lower levels of GFP staining
- coordinate expression both of HRH2-TCS-Gal4 and Arr-TEV fusion proteins

Tango-Trace: HA-Tango fly heated

- Mosaic analysis with repressible cell marker (MARCM) clones were generated by a 30 min heat shock every day from early larval to late pupal stages during development.
- Interchromosomal recombination by heat shock during development: loss of Gal80 (transcriptional repressor) and permits the activity of gal4 driver
- Generated flies that carry the HA-Tango-Trace transgenes, along with the transgenes facilitating MARCM
- MARCM combined with Tango → visualize CD8-GFP expression in postsynaptic neurons (HA-Tango Flies)
- gradual warming → activation of photoreceptors expressing TrpA1 (temperature sensitive channel) → HA release
- This strategy also labels the presynaptic photoreceptors in which Rh-Gal4 drives the UASmCD8-GFP reporter and postsynaptic dendritic and axonal arbors are visualized

Tango-Trace: Projection tracing

- Promoters of four different rhodopsins used to drive expression of the temperature-sensitive cation channel, TrpA1, in p/y R7 and R8 cells
- Heat-induced HA release from yR7 cells driven by Rh4-Gal4
- Detect postsynaptic partners in the medulla and the projections of these postsynaptic neurons in the lobula complex

Tango-Trace: distinct branching

- photoreceptors, p/y R7 and R8 each synapse on one of four distinct TmY cells. distinct branching that characterize the four TmY cell types
- Tracking strategy labels postsynaptic partners of R7 and 8 photoreceptors and R7, 8 cells themselves= examine projections from TmY into labeled column

Tango-Trace: Neurite tracing of rare cells

Dm8 is a wide-field amacrine cell contacting 13–15 columns in layer 6 of the medulla and was identified as a postsynaptic target of p/y R7 and R8 $\,$

contact Mia, a narrow-field amacrine cell contacting 4-5 columns in layer 8 of proximal medulla

Tango-Trace: projection pattern

similarity in projection pattern is observed among the four different TmYs medullary projections of the TmY cells cluster into four groups that correspond to their four presynaptic partners

 A TmY cell, postsynaptic to a given photoreceptor type also innervates columns that receive input from different photoreceptors

Tango-Trace: Imaging responses of TmY cells

- Encoded calcium indicator expressed cells postsynaptic to yR7 and in yR7 photoreceptors cells using HA-Tango-Trace
- Expose eye to local heat with a temperature controlled copper wire
- The heat-sensitive channel, dTrpA1, is expressed in the individual photoreceptors and calcium responses were recorded (2Photon) in the postsynaptic partners labeled by Tango-Trace in response to heat activation (stimulating yR7 and R8 cells)
- Immuno-stained to depict CD8GFP labeling with anti-GFP (green), neurophil (blue), photoreceptor (red)

Summary

- HA-Tango-Trace labels specific functional connections in the visual system
- LIMIT: Although each TmY innervates two to three distinct columns, the photoreceptor in only one of these columns was labeled by the Tango-Trace strategy

iTango: light-switch control system

- **two-component** light-switch control system, named **B**lue-**L**ight-Inducible **T**EV protease (BLITz)
- TEV-C and TEV-N cant bind without light
- Replaced TEV with TEV-C to reduce leakiness originated form intrinsic affinity of C and N terminal fragments
- Light: CIBN and CRY2PhR interact → TEV-C and TEV-N interact and cleave TEV seq.
- AsLOV2= new light inducible dimer
- BLITz relies on protein-protein interaction

iTango and BLITZ

- BLITZ1 as light-gating module
- Gene expression increased with longer exposure time

iTango: two-step activation design

Both ligand and light should be present

Ligand binding → b-arrestin TEV-N recruited, not cleaved

Blue light → TEV-C forms protease and cleaves TEV Seq → Transcription activator, reporter gene expression

iTango: two-step activation design

iTango (with D2R domain) construct expressed in HEK cells and treated with D2R agonist → SEAP reporter (dark: no gene expression; blue light; gene expression)

Secreted embryonic alkaline phosphatase (SEAP) = study promoter activity or gene expression

B-arrestin2 protein in cytosol is critical for good SNR

iTango2: in neurons

Lack of CRY2PHR-CIBN light switch: efficient formation of protein complex

iTango2: in neurons

Rat HC culture neurons transfected with iTango2

SNR corresponding to an ~900% increase. conventional Tango system, the same experiment yielded only a 50% increase in gene expression.

Blue

iTango2: in neurons

DrD2-iTango2 construct (barrestin TEVC Tomato, TRE EGFP reporter) In mouse cortical pyramidal neurons (slice cultures).

Check if iTango2 interacts with endogenous pathways:

- → Dendirtic spine number unachanged (vs nontransfected neurons)
- → Electrophysiology unchanged (AMPAR EPSCs normal)

iTango2: different neurmodulators

Cannabinoid receptor, serotonin receptor...

iTango2: in vivo labeling

Injecting DRD2-iTango2 viuses into nucleus accumbens and AAV-dFlox mCherry into VTA DA neuron projections are unilateral: Expecting left hemisphere "light only", right hemisphere "Dopamine release"

iTango2: in vivo labeling

Injecting DRD2-iTango2 viuses into nucleus accumbens and AAV-dFlox mCherry into VTA DA neuron projections are unilateral: Expecting left hemisphere "light only", right hemisphere "Dopamine release"

iTango2: detection of endogenous DA release

DRD2-*i*Tango2 is sufficiently sensitive to detect endogenous phasic DA release *in vivo*

ChR2 expression in DA neurons confirmed in a posterior coronal section from the same mouse

iTango2: behavioral studies

4 sections on the surface of ball maze: plain, grooved, gridded, striped (sensory cues) Sensory cues associated with reward (grid surface= water reward)

injected DRD2-iTango2 into the premotor cortex (M2) + blue light for 3 s whenever rewards were delivered

iTango: behavioral studies

EGFP expression with DA release and blue light

iTango system enables the visualization of neuromodulation action with high spatiotemporal precision in awake behaving animals

iTango: manipulation of neuronal activity

manipulation of neuronal activity by optogenetic effectors

Viruses were injected in central striatum and induced ChR2 expression with light during locomotion or reward-related (reported to be activated by DA)

iTango: channelrhodopsin triggered locomotion

Channelrhodopsin activated with blue light → locomotion and no locomotion triggered dependent on neuronal population

distinguish behaviorally relevant subpopulations of neurons in behaving animals and to test the sufficiency of eliciting behaviors.

iTango: cocaine induced locomotion

Flox and Cre: controls, blue light necessary for expression D2-coupled DA-receptor sensing system to induce the expression of halorhodopsin (eNpHR), an light-activated proton pump that inhibits cell firing

iTango: locomotor sensation assay

Slices from NAc of Cre-positive mice exposed to blue light and cocaine

Ex vivo slices: electrophysiology → light inhibited firing of EYFP-positive cells

Injection of cocaine with blue-light → locomotor response

After 7 days of withdrawal: challenge dose of cocaine → locomotion suppression in D1-Cre

iTango 2017

Dark control or asynchronized light and cocaine

manipulate and thus assess the behavioral relevance of a temporally and genetically identified population of neurons.

high SNR and precise spatiotemporal

Summary

Tango

 converts a transient interaction into a stable and amplifiable reporter gene signal to record the activation of a receptor without interference from endogenous signaling pathways

Tango-Trace

 fast and reliable light-inducible technique, with a high SNR, that can be used to monitor and manipulate neuromodulatory signaling events

iTango

- iTango system enables the visualization of neuromodulation action with high spatiotemporal precision in awake behaving animals
- high SNR and precise spatiotemporal resolution
- monitor protein interactions in a cell with a high degree of selectivity and sensitivity

Thank You

