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Why neuronal activity tagging?

Obtain a brain-wide scale visualization with cellular resolution of neuronal activation
This allows the analysis of how neuronal circuits are disrupted during pathology or affected by specific
behaviors/experiences

|deally you would want electrical activity of all neurons in the brain of a living and freely moving animal
with single cell resolution - so far a bit complicated...

Different options with their drawbacks:
- fMRi or EEG (low resolution but live and whole-brain)
—> Calcium activity/voltage recordings (high resolution but very limited FOV)

Compromise using in vivo tagging and subsequent ex vivo imaging



Targeted recombination
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DeNardo, Laura A., et al. Nature neuroscience 22.3 (2019): 460-469.

In active populations

TRAP allows permanent genetic access
to neurons activated by a specific
experience

The TRAP system uses an IEG (cFos)
locus to drive the expression of tamoxifen-
inducible Cre recombinase along with a
Cre-dependent effector (e.g. GFP)

When a neuron is active in the presence of
tamoxifen, the Cre can enter the nucleus
to catalyze recombination, resulting in
permanent expression of the effector



Similar techniques available: TetTag
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Fos promoter to drive the expression of a
doxycycline-repressible tetracycline
transactivator (tTA), and artificial TF

During the resting state, tTA is usually
bound to DOX and consequently unable to
link to the TRE sequence

With behavioral task and no DOX, the Fos
promoter stimulates the synthesis of tTA,
which binds the synthetic promoter
tetracycline-responsive element (TRE) an
allows the expression of the effector gene

- High background due to slow DOX metabolism

Reijmers, Leon G., et al. Science 317.5842 (2007): 1230-1233.



MANY similar approaches based on cFos
dependent neuronal tagging

« CANE: lock and key strategy for capturing activated neuronal ensembles with engineered mice and
viruses

» VGATE: mixture of three viruses, virus-delivered genetic activity-induced tagging of cell ensembles

« E-SARE: synaptic activity- responsive elements, regulating the expression of Arc and effector genes
with the employment of 3 activity dependent transcription factors

 RAM: robust activity marking; like SARE, using a synthetic promoter to tag active neurons

Franceschini, Alessandra, et al. Frontiers in Neuroscience 14 (2020): 1111.



Research Papers about activity tagging

Targeted recombination in active populations as a new mouse
genetic model to study sleep-active neuronal populations:
Demonstration that Lhxé+ neurons in the ventral zona incerta
are activated during paradoxical sleep hypersomnia
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Lhx6+ neurons and paradoxical sleep: background

- Paradoxical sleep is Rapid-eye movement sleep (REM) sleep - called paradoxical because the

brain is very active (dreaming) but the body is paralyzed (atonia)

- Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamic area (LHA) and zona

incerta (Zl) they are REM promoting
- Neurons expressing LIM homeobox 6 (Lhx6) in the ZI express cFos at the end of dark period or

after total sleep deprivation (Liu, Kai, et al. Nature 548.7669 (2017): 582-587)

—> If activated they increase NREM and REM sleep

No characterization of REM active neurons in the LHA and ZI has been done



TRAP system and experimental plan
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Triple labelling with w-active neuronal markers

mCherry

- In LHA if mCherry (TRAP) is
p— activated by wake and perfusion
- happened after a period of wake :

Here triple labelling
cFo8 ORX mCherry+cFos+Orexin

mCherry
- If mCherry is activated by wake

but perfusion happened after
paradoxical sleep rebound (PSR)
no triple labeling, only
mCherry+orexin

.
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ORX = orexin neurons, fundamental for maintaining wakefulness (see narcolepsy)



Triple labelling with MCH neurons

PSR-PSR (M1312)
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MCH neurons have been shown to be REM active

In LHA if mCherry (TRAP) is
activated by PSR and perfusion
happened after PSR : triple
labelling mCherry+cFos+MCH

If mCherry is activated by wake
but perfusion happened after PSR
no triple labeling, only cFos+ MCH



Triple labelling with Lhx6 neurons
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Quantification of the triple labelling
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Summary and conclusions

ORX neurons express cFos during W but not during PSR

Neurons expressing MCH known to be specifically active during PSR are mCherry+ during
PSR and not during W

A large proportion of the neurons expressing mCherry express cFos when the animals are
re-exposed to the same condition, validating the TRAP methodology

Lhx6+ neurons are specifically activated during PSR and not during W like previously

reported



Temporal association cortex and auditory-
driven maternal plasticity

» Study how ultrasonic vocalizations (USVs) affect mothers’ behaviour - focus on cortical
circuits

« Using TRAP technique, the temporal association cortex (TeA) shows high activity in mothers
exposed to USVs

« Using tracing techniques, dense extracellular recordings and neuronal activity manipulation

(DREADD receptors) to study TeA active cells



Activation of TeA neurons after USVs exposure
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USVs activated neurons in other brain regions
and naive female
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- Ventral and lateral orbitofrontal cortex also showed TRAPed cells

- Compared to other regions, USV activated more cells in TeA and more in mother than in naive females

- TeA might be important for processing USVs in mothers



Combination of monosynaptic trans-synaptic
rabies with TRAP
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Mapping inputs onto A1 and TeA
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USV-responsive neurons in TeA and A1 are
interconnected
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- They TRAPed and traced neurons from the TeA and observed how many cell were also TRAPed in A1



Probability of interconnection between active
neurons in TeA and A1

- They measured the density of TRAP-only cells, input-only cells

and TRAP-input-cells (double labelled, DL)

Expected number of double-labeled cells =

- Then computed the probability of finding a DL neurons with this

) , [Cell density in A1] x [Volume of ROI| x Pr[TRAP cells]
estimation:

x Prlinput cells]

- The number of DL neurons was significantly larger than

expected in USV and WC stimulated groups - neurons
responding to noise bursts are preferentially connected
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USV-TRAPed TeA cells control maternal behavior

x8~14 trials
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- Forced-choice preferential task of pup retrieval

- Combination of TRAP and inhibitory
chemogenetics (DREADD receptors)
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Silencing USV-TRAPed A1 neurons decrease

maternal responses as well
D E
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-  USV-responsive neurons in A1 are supposed to drive USV neurons in TeA
- TRAPiIng and chemogenetic inhibition of USV-responsive TeA neurons reduces pup retrieval
similarly to inhibition of TeA neurons



USYV cellular response in mothers and naive females
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Summary and conclusions

TeA plays a role in encoding pup cries during motherhood

Because of its long-range inputs, the TeA is not merely a high-order auditory cortex but rather a site
that integrates sounds with other information

TeA and A1 USVs responsive neurons are functionally connected in mothers

Inhibition of these same neurons causes reduction of maternal pup retrieval

TeA USVs neuronal responses increase when females become mothers

- TRAP+chemogenetics enabled the homogeneous manipulation of several thousand functionally
tagged neurons

- TRAP+rabies can be useful to elucidate the anatomy and physiology of any new brain region



Thalamo-amygdalar circuit and fear memories

« Understanding the neuronal circuit behind remote fear and trauma memories
« Previous data only focused on the neural correlates of extinction protocols applied shortly after
the encoding of the traumatic memory

« Traumatic memories undergo a systems consolidation process over time
- Fear extinction for remote memories might not rely on the same canonical brain
networks as for recent time points

- Combination of viral tracing, neuronal activity mapping (no TRAP though!), fiber

photometry, chemogenetic and optogenetic (basically everything!)



Remote fear extinction activates IL->NRe—>BLA
pathway e~ o e T

BLA = basolateral amygdala

« Connections between IL and BLA are active during fear attenuation induced by exposure therapy
extinction protocols (on rodents and on recent memories only)
« Retrograde tracing and cFos expression analysis upon contextual fear conditioning (CFC) test

« Retrograde viruses injected in BLA and NRe to observe connections with the IL
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Validation of the IL->NRe—->BLA pathway
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The NRe projects to the BLA and could be a node between IL and BLA controlling remote fear memory extinction



NRe is directly participating in remote fear
memory extinction

AAVE-hM4Di-mCherry hM4Di
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Rec = recall
SR = spontaneous
recovery of the fear
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« Daily CNO administration at remote memory recall and during the extinction paradigm
« CNO-treated animals retained significantly higher freezing levels

- Persistent impairment of fear extinction upon NRe inactivation



NRe is directly participating in remote fear
memory extinction
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« Gain of function of NRe activity is beneficial for remote fear memory extinction

—> activation of the NRe reduces freezing behavior during memory extinction and contextual re-exposure



NRe neurons are more active when freezing stops
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« Expression of genetically encoded Ca?* indicator GCaMP6f in NRe excitatory neurons to record neuronal activity
« Transient elevation in NRe activity shortly before the termination of freezing bouts during recall extinction sessions

* No increase in NRe activity during habituation = activation specific to fear responses



PHOTOACTIVATION
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NRe mediates freezing cessation during remote extinction
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Excitation using Chronos of excitatory NRe neurons reduced freezing time during remote fear extinction

Inhibition using ArchT increased freezing duration



NRe to BLA projections regulate freezing cessation
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« Using retrograde virus
carrying the Cre
recombinase to express
either GCaMP6 or Chronos
only in the NRe neurons
projecting to the BLA

- NRe neurons projecting to
the BLA are active during
freezing cessation

—> If activated they reduce
freezing time



NRe—>BLA synaptic plasticity in remote fear extinction
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« Ex vivo patch clamping on NRe
terminals in the BLA activated
by light pulses

- Increase in AMPA/NMDA ratio
after remote fear memory
extinction

- Chemogenetic NRe inhibition
under fear extinction prevented
synaptic potentiation

- Chemogenetic activation of
NRe neurons during a
suboptimal fear extinction
reduced freezing behavior and
increased synaptic potentiation



NRe->BLA projections mediate remote fear extinction

» Repeated intra-amygdalar infusions of CNO in a
suboptimal extinction paradigm

| BLA; - CNO improved fear extinction after re-exposure to
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. . extinction paradigm
ihMSDq Recall ET ithDﬁ' Recall T .
ofc | Homecage| sR | cFc Extinction SR - Repeated inhibition of NRe—BLA neurons during
"0 "3 31 3334 48d 0 " 30 31 34 ' asd the extinction paradigm impaired remote fear
A S v extinction
901 . , — 90 1 ! : T
804 | L 801 | | L
go] B R -
2o = R s
§ %01 ] N 504 || e
fel Pop fe -
301 o 301, | o
20 lml L = 20 =~ - ——_—

BL Rec Home ET SR BL  Rec Extinction SR



Summary and conclusions

» First functional description of a neuronal circuit underlying remote fear memory extinction
« The NRe activity is increased before the end of freezing epochs during remote fear memory extinction

« The NRe activity is sufficient and necessary to regulate freezing length during extinction
- Chemogenetic NRe activation at remote recall immediately triggers an extinction-facilitating effect
- Chemogenetic inhibition has no effect on remote fear recall per se but impairs fear attenuation during later stages
of the extinction paradigm

« Downstream of the NRe, we found that remote fear memory extinction is mediated by excitatory
monosynaptic projections to the BLA

« This connection shows an increased AMPA/NMDA ratio only after extinction training

- No used of actual activity tagging but interesting method to see how to use IEG expression to
analyze circuits activity and clcium imaging to match them with a specific temporal response to a
behaviour
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Dissecting NRe connections through neuronal activation

AAVE-hM3Dg-mCherry

« Using DREADD receptors
in the NRe to activate
downstream neurons

* Upon CNO injections
neurons expressing the
hM3 channel will fire and
activate downstream
neurons
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The BLA specifically responds to inputs from the NRe
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» Optogenetic activation onto NRe fibers to record excitatory postsynaptic currents (EPSCs) in
downstream targets

 The BLA s the only nucleus in the amygdala functionally connected to the NRe



Tagging transiently active inputs: TRACE
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Tracing Retrogradely the Activated Cell
Ensemble (TRACE) method:

« atg mouse expresses the tamoxifen-
inducible CreERT2-recombinase under the
Arc or cFos promoter

 The AAV2-retro infects the cells in the area of
interest and carries a floxed EGFP

« Upon 4-OHT injection, the CreERT2
recombination occurs in active cells and
EGFP is expressed in all active cells infected
with the virus

- This causes labeling of active cells in the
area of interest as well as in their
respective inputs
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