


1. Computational quantification aims to reduce subjective interpretation

2. Need to process ever-larger sets of images at high-throughput (thousands of 
images can be processed in parallel)

3. Computations makes the results reproducible

4. Algorithm can detect pixel variations that the human eye cannot see

WHY A 
COMPUTATIONAL

APPROACH



COMPUTATIONAL SOFTWARE FOR CONTENT QUANTIFICATION

High demand
• As analysis tasks became more common, several tools were created to improve 

accessibility through a graphical front-end.

Time-consuming procedure
• Counting thousands of cells or (contents) with a certain marker, drawing the outlines of cells 

to quantify their shape and assess the strength of a reporter

Project-specific software
• They don’t allow training on new data, thus restricting their application domain to a small 

range of datasets

Trainable Software Package need
• Generic software package that can adapt itself autonomously to the task from appropriate 

data
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1. From a biological perspective, a CNN approximately emulates the primate brain's 
visual system.

2. Manually labeled image (annotations) generates weighted filters which will determine 
the feature-extractions

3. Images must be converted first into numbers before they are accessible for statistical 
analysis.

4. It employs a combination of convolutional and pooling layers before the dense layers 
to progressively encode richer representations in an image

INTRODUCTION – an easy DCNN’s structure description 
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1. It learns discriminative representations (or features) from image examples

2. Detection performance increase with the n° of iterations

3. A pre‐trained model from one domain can be adapted through “fine‐tuning”

1. Machine-learning experts are often required

2. High amount of annotations (time-consuming)

3. Getting segmented images does not mean you nailed it: time-consuming for 
checking biases and eventually start back the annotations from the beginning.

ADVANTAGES

DISADVANTAGES



1. Image pre-processing

2. Classification and detection (classify objects within the image)

3. Image segmentation (sliding windows for volumetric imaging)

4. Transfer learning and Domain adaptation

DCNN IN IMAGE 
CYTOMETRY

DCNN 
APPLICATIONS

1. High content screening

2. Cytology and histopathology

3. Time-lapse imaging analysis





ImageJ plug-in that enables non-machine-learning experts to analyse their data with U-
Net.

Generic deep-learning-based software package for cell detection and cell segmentation

Tuned for new tasks adaptation with few annotated samples

INTRODUCTION



• The U-Net segmentation plugin interface

• New annotations for different expected results

• Cell detection, classification, and counting 

• Pretrained annotations tuned for U-Net segmentation plugin

SOFTWARE
FEATURES
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• Be consistent

• Quality over quantity

• Capture the whole range of visual appearances (not important the 
amount of the annotations, but the variability of objects within the 
dataset)

U-Net software guidelines - New annotations for different expected results
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U-Net software guidelines - Cell detection, classification, and counting 
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• The U-Net segmentation plugin interface

• New annotations for different expected results

• Cell detection, classification, and counting 

• Pretrained annotations tuned for U-Net segmentation plugin

SOFTWARE
FEATURES



Included pretrained annotations from experiment images

• Segmentation mask pretrained images
• segmentation of single cells recorded with various common imaging 

modalities 



(2) Segmentation of single cells recorded with various common imaging modalities 

Intersection over union (IoU) evaluates the overlap between the ground truth for each cell and the segmentation computed by the network. 
A value of 0 corresponds to no overlap at all, a value of 1 to a perfect pixel-by-pixel match. Values above 0.8 indicate a very good segmentation. 



(2) Segmentation of single cells recorded with various common imaging modalities 

TRANFER LEARNING
When your cell type to be analysed is morphologically different from these 11 pre-trained cells



U-Net segmentation plugin can be directly used to count or segment your input image
CONCLUSION

Transfer learning must be used when your cells to be analysed morphologically differ 
from the pre-trained ones (11 showed before) 

Applicable model for a High content screening

The integration of the software in ImageJ and a step-by-step protocol tutorial make 
deep learning available to scientists without a computer-science background 





Volumetric imaging to visualize neurons in intact mouse brain tissue has become a 
widespread technique 

INTRODUCTION

Without a computational method for quantifying axon content, researchers must still 
select and score representative two-dimensional (2D) optical sections 

A growing need for computational tools to analyse the resultant large datasets in three 
dimensions



The automated identification and segmentation of axons from 3D images should 
circumvent these limitations

AIMS Mitigation of artifacts that could contaminate the samples (myelin autofluorescence 
and non-specific antibody labeling)

Accurate “projectome” reconstruction (also for dense labeling)

Generic software package that can adapt itself autonomously to the task from 
appropriate data



18 separate intact brains containing fluorescently 
labelled serotonergic axons were imaged

CLEARING iDISCO+ AdipoClear

Autofluorescent fiber tracts in striatum 

36 substucks manually labeled for axons

40 substacks manually labeled for artifacts

• Substacks were manually selected to represent the diversity of possible brain 
regions, background levels, and axon morphology. 

• They annotated 3 to 10 individual XY planes within each substack, at a 
spacing of 80 to 180 μm between labeled slices 

• In the same XY slice, a second label surrounding the axon annotation 
(“edges”) was automatically generated, and the remaining unlabeled voxels in 
the slice were given a label for “background.” 



• For a given input cube, the network outputted a 36 × 36 × 36 volume 
containing voxel-wise axon predictions (0 < P < 1) 

• Large volumes, including intact brains, were processed with a sliding 
window strategy. 

• From this output, a thinning strategy was implemented to generate a 
skeletonized armature of the extracted axons 
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A 2-mm-thick volumetric coronal slab, before and after the TrailMap procedure, which 
includes axon extraction, skeletonization, and alignment to the Allen Brain Atlas 
Common Coordinate Framework 

Raw image TRAILMAP SKELETONIZATION OUTPUT



With the extracted axonal projectome
transformed into the Allen Institute reference 
space, the axon armature could be overlaid 

on a template to better highlight their 
presence, absence, and structure in local 

subregions. 

Each panel represents 500 μm of Z-depth in the coronal axis, color-coded by depth 
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3D DENSITY HEATMAP





NOT TRAINABLE

TRAINABLE



Conventional machine learning TRAILMAP DCNN



Strong segregation of axonal projection patterns between
5HT+-VGlut3+ and 5HT+- Trh+ in cDRN

3D U-Net-based CNN Skeletonization Coronal Z-projection showing axonal 
innervation patterns of 6 aligned brains

Coronal heatmaps of axonal innervation patterns at 12
positions along the rostral–caudal axis for the same six
brains as seen in the image before.

Weightings for individual voxels represent axonal content
within a radius of 225 𝜇𝜇m.

TRAILMAP application
Ren et al. eLife 2019 - Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse 
dorsal and median raphe nuclei 



Vglut3+ axons project preferentially in anterolateral cortical regions and adjacent structures
Trh+ axons preferentially project in thalamic and hypothalamic regions





TRAILMAP training for detecting cell-bodies
25

 µ
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Soma

Pv positive neurons (from Yingjun)

PvCre mouse x Ai6 reporter mouse

As they are larger than axons, I modified the annotation strategy and the script by changing the autogenerated 
“edge” label from 1 to 2-pixels

Neuron’s soma (diameter) stands from 4-100 µm BUT they labeled slices 80 to 180 μm far from each other.
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(1) SEGMENTATION EDITOR PLUGIN
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(2) TRAINING-SET 
within training-set/volumes within training-set/labels

Why isn’t it labelled inside? 

Why are the artifacts still 
recognized? 

Why is it labelled inside 
with grey and not empty as 
in the first image? 

They seem bigger than they 
should be. Is it fine at this 
stage?



(3) Slice of the brain-TILE of PV-Ai6
Raw image Segmented image



(3) 3D projection TILE OF PV-Ai6



(3) Slice of the brain-TILE of PV-Ai6      - Cerebellum 
Raw image Segmented image



More annotations!!!!!!!
Are these recognized artifacts???

(3) 3D maximal projection TILE of PV-Ai6
Cerebellum 



Mitigations of artifacts biases (reduction of false positive)

CONCLUSION Thinning strategy allows to construct an armature of predicted axons: it reduces false 
breaks of dim axonal segments

GitHub repository (AlbertPun/TRAILMAP) is available and comes with a README.txt
for easy-to-use applications

It reliably extracts mesoscale projectomes rather than reconstructions of axons from 
sparsely labeled individual neurons 
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