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1. Computational quantification aims to reduce subjective interpretation

2. Need to process ever-larger sets of images at high-throughput (thousands of

WHY A images can be processed in parallel)

COMPUTATIONAL
APPROACH .
3. Computations makes the results reproducible

4. Algorithm can detect pixel variations that the human eye cannot see



COMPUTATIONAL SOFTWARE FOR CONTENT QUANTIFICATION

High demand

» As analysis tasks became more common, several tools were created to improve
accessibility through a graphical front-end.

Time-consuming procedure

« Counting thousands of cells or (contents) with a certain marker, drawing the outlines of cells
to quantify their shape and assess the strength of a reporter

Project-specific software

* They don't allow training on new data, thus restricting their application domain to a small
range of datasets

Trainable Software Package need

» Generic software package that can adapt itself autonomously to the task from appropriate
data
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INTRODUCTION — an easy DCNN’s structure description

1.

From a biological perspective, a CNN approximately emulates the primate brain's
visual system.

Manually labeled image (annotations) generates weighted filters which will determine
the feature-extractions

Images must be converted first into numbers before they are accessible for statistical
analysis.

It employs a combination of convolutional and pooling layers before the dense layers
to progressively encode richer representations in an image

Convolution layer 1 Pooling layer 1 Convolution layer 2 Pooling layer 2 Dense layers Output




INTRODUCTION — U-Net DCNN structure

192 128 128 K

SIS
512 256‘

- I:I"E"I"'EI > convolution 3x3, RelLU
&

512 512 1024 512 ¥ max pooling 2x2 (stride 2)

I'..’. ."-‘- ,‘ up-convolution 2x2 (stride 2)
E=R 2 v R Y g &

1024 i “ convolution 1x1
copy & crop
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(left) Input: Animage tile with 540x540 pixels and C channels (blue box). (right) Output: The K-class soft-max segmentation with 356x356 pixels (yellow
box). Blocks show the computed feature hierarchy. Numbers atop each network block: number of feature channels; numbers left to each block: spatial

feature map shape in pixels. Yellow arrows: Data flow




INTRODUCTION — U-Net DCNN structure

Training,

; 9
1024 2048
Bottleneck

Conv

U-Net CNN Architecture
(Python & TensorFlow)
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ADVANTAGES

DISADVANTAGES

1.

2

It learns discriminative representations (or features) from image examples
Detection performance increase with the n® of iterations

A pre-trained model from one domain can be adapted through “fine-tuning”

Machine-learning experts are often required
High amount of annotations (time-consuming)

Getting segmented images does not mean you nailed it: time-consuming for
checking biases and eventually start back the annotations from the beginning.



1. Image pre-processing

2. Classification and detection (classify objects within the image)

DCNN IN IMAGE
CYTOMETRY 3. Image segmentation (sliding windows for volumetric imaging)

4. Transfer learning and Domain adaptation

1. High content screening

DCNN 2. Cytology and histopathology
APPLICATIONS

3. Time-lapse imaging analysis




nature > nature methods > brief communications > article

Brief Communication | Published: 17 December 2018

U-Net: deep learning for cell counting, detection,
and morphometry

Thorsten Falk, Dominic Mai, Robert Bensch, Ozgiin Cigek, Ahmed Abdulkadir, Yassine Marrakchi, Anton
Bohm, Jan Deubner, Zoe Jackel, Katharina Seiwald, Alexander Dovzhenko, Olaf Tietz, Cristina Dal
Bosco, Sean Walsh, Deniz Saltukoglu, Tuan Leng Tay, Marco Prinz, Klaus Palme, Matias Simons, llka

Diester, Thomas Brox & Olaf Ronneberger

Abstract

U-Net is a generic deep-learning solution for frequently occurring quantification tasks such
as cell detection and shape measurements in biomedical image data. We present an Image)
plugin that enables non-machine-learning experts to analyze their data with U-Net on either
alocal computer or aremote server/cloud service. The plugin comes with pretrained
models for single-cell segmentation and allows for U-Net to be adapted to new tasks on the

basis of a few annotated samples.



Imaged plug-in that enables non-machine-learning experts to analyse their data with U-
Net.

INTRODUCTION ; s : :
Generic deep-learning-based software package for cell detection and cell segmentation

Tuned for new tasks adaptation with few annotated samples



« The U-Net segmentation plugin interface

* New annotations for different expected results
SOFTWARE
FEATURES « Cell detection, classification, and counting

« Pretrained annotations tuned for U-Net segmentation plugin



« The U-Net segmentation plugin interface

* New annotations for different expected results
SOFTWARE
FEATURES - Cell detection, classification, and counting

» Pretrained annotations tuned for U-Net segmentation plugin
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« The U-Net segmentation plugin interface

* New annotations for different expected results
SOFTWARE
FEATURES - Cell detection, classification, and counting

» Pretrained annotations tuned for U-Net segmentation plugin




U-Net software guidelines - New annotations for different expected results

* Be consistent
* Quality over quantity

« Capture the whole range of visual appearances (not important the
amount of the annotations, but the variability of objects within the

dataset)
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« The U-Net segmentation plugin interface

* New annotations for different expected results
SOFTWARE
FEATURES « Cell detection, classification, and counting

» Pretrained annotations tuned for U-Net segmentation plugin




U-Net software guidelines - Cell detection, classification, and counting
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 The U-Net segmentation plugin interface

* New annotations for different expected results
SOFTWARE
FEATURES - Cell detection, classification, and counting

« Pretrained annotations tuned for U-Net segmentation plugin




Included pretrained annotations from experiment images

« Segmentation mask pretrained images
« segmentation of single cells recorded with various common imaging
modalities



(2) Segmentation of single cells recorded with various common imaging modalities

Fluorescence (F) DIC Phase contrast (PC) Bright-field (BF)

F2 @ |F3 ' DIC1 i'PC1( . |PC2 o {PC3
Pl Q@ i &

()

—_

@
@@,

HeLa

_ Individual networks per dataset
_ Combined network
_ Dataset left out (* = N/A)

Intersection over union (loU) evaluates the overlap between the ground truth for each cell and the segmentation computed by the network.
A value of 0 corresponds to no overlap at all, a value of 1 to a perfect pixel-by-pixel match. Values above 0.8 indicate a very good segmentation.



(2) Segmentation of single cells recorded with various common imaging modalities

TRANFER LEARNING

When your cell type to be analysed is morphologically different from these 11 pre-trained cells

——E—— F1-MSC
—O—— F2-GOWTH1
———— F4-Hela
———— PC1-U373
——— BF1-POL

10
#Labelled cells




The integration of the software in ImagedJ and a step-by-step protocol tutorial make
deep learning available to scientists without a computer-science background

U-Net segmentation plugin can be directly used to count or segment your input image
CONCLUSION

Transfer learning must be used when your cells to be analysed morphologically differ

from the pre-trained ones (11 showed before)

Applicable model for a High content screening



Proceedings of the
National Academy of Sciences
of the United States of America

Mapping mesoscale axonal projections in the mouse
brain using a 3D convolutional network

Drew Friedmann®®1®, Albert Pun®®’, Eliza L. Adams®<®, Jan H. Lui®*®®, Justus M. Kebschull®?, Sophie M. Grutzner®?,
Caitlin Castagnola®®, Marc Tessier-Lavigne?, and Liqun Luo®"2

“Department of Biology, Stanford University, Stanford, CA 94305; bHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305;
and “Neurosciences Graduate Program, Stanford University, Stanford, CA 94305

Contributed by Liqun Luo, March 23, 2020 (sent for review October 22, 2019; reviewed by Gregory S. X. E. Jefferis and Hanchuan Peng)

Significance

Simple, high-resolution methods for visualizing complex neural circuitry in 3D in the intact
mammalian brain are revolutionizing the way researchers study brain connectivity and
function. However, concomitant development of robust, open-source computational tools
for the automated quantification and analysis of these volumetric data has not kept pace.
We have developed a method to perform automated identifications of axonal projections
in whole mouse brains. Our method takes advantage of recent advances in machine
learning and outperforms existing methods in ease of use, speed, accuracy, and
generalizability for axons from different types of neurons.



Volumetric imaging to visualize neurons in intact mouse brain tissue has become a
widespread technique

A growing need for computational tools to analyse the resultant large datasets in three
INTRODUCTION| dimensions

Without a computational method for quantifying axon content, researchers must still
select and score representative two-dimensional (2D) optical sections




The automated identification and segmentation of axons from 3D images should
circumvent these limitations

Accurate “projectome” reconstruction (also for dense labeling)

AIMS Mitigation of artifacts that could contaminate the samples (myelin autofluorescence

and non-specific antibody labeling)

Generic software package that can adapt itself autonomously to the task from
appropriate data
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ROSA-LSL-FSF-tdTomato

18 separate intact brains containing fluorescently
labelled serotonergic axons were imaged
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For a given input cube, the network outputted a 36 x 36 x 36 volume
containing voxel-wise axon predictions (0 < P < 1)

Large volumes, including intact brains, were processed with a sliding
window strategy.

From this output, a thinning strategy was implemented to generate a
skeletonized armature of the extracted axons
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D Raw image TRAILMAP SKELETONIZATION OUTPUT

A

=
=

A 2-mm-thick volumetric coronal slab, before and after the TrailMap procedure, which
includes axon extraction, skeletonization, and alignment to the Allen Brain Atlas
Common Coordinate Framework



With the extracted axonal projectome
transformed into the Allen Institute reference
space, the axon armature could be overlaid

on a template to better highlight their

presence, absence, and structure in local
subregions.

Each panel represents 500 um of Z-depth in the coronal axis, color-coded by depth
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transformed into the Allen Institute reference
space, the axon armature could be overlaid

on a template to better highlight their

presence, absence, and structure in local
subregions.

l

However, it was difficult to resolve steep
changes in density or local hotspots of
innervation.

Each panel represents 500 um of Z-depth in the coronal axis, color-coded by depth
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TRAILMAP application

Ren et al. eLife 2019 - Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse
dorsal and median raphe nuclei

3D U-Net-based CNN Skeletonization Coronal Z-projection showing axonal Coronal heatmaps of axonal innervation patterns at 12
innervation patterns of 6 aligned brains positions along the rostral-caudal axis for the same six
brains as seen in the image before.

Strong segregation of axonal projection patterns between _ —
+\/Glut3* and 5HT*- Trh* in cDRN Weightings for individual voxels represent axonal content
SHT*-VGlut3* an -Trh*inc within a radius of 225 um.
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TRAILMAP training for detecting cell-bodies

Pv positive neurons (from Yingjun)

PvCre mouse x Ai6 reporter mouse

As they are larger than axons, | modified the annotation strategy and the script by changing the autogenerated
“edge” label from 1 to 2-pixels

Neuron’s soma (diameter) stands from 4-100 um BUT they labeled slices 80 to 180 um far from each other.

Soma

25 um
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within training-set/volumes within training-set/labels

(2) TRAINING-SET
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(3) Slice of the brain-TILE of PV-Ai6

Raw image Segmented image
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(3) 3D projection TILE OF PV-Ai




(3) Slice of the brain-TILE of PV-Ai6 - Cerebellum

Raw image

Segmented image
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(3) 3D maximal projection TILE of PV-Ai

Cerebellum



It reliably extracts mesoscale projectomes rather than reconstructions of axons from
sparsely labeled individual neurons

Mitigations of artifacts biases (reduction of false positive)

CONCLUSION | Thinning strategy allows to construct an armature of predicted axons: it reduces false
breaks of dim axonal segments

GitHub repository (AlbertPun/TRAILMAP) is available and comes with a README.txt
for easy-to-use applications




THANK YOU SO MUCH!
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