

Spatial and Temporal Dynamics of mRNA Degradation

Technical Journal Club

Gianluca Spaltro
MD/PhD Student – Manz Lab

Zurich, 21/11/17

Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution

Susanne Kramer*

Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany *Nucleic Acids Research*, Volume 45, Issue 7, 20 April 2017, Pages e49,

Technology

Molecular Cell

The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells

Ivana Horvathova ¹ · ² · ⁴, Franka Voigt ¹ · ⁴, Anna V. Kotrys ¹, Yinxiu Zhan ¹ · ², Caroline G. Artus-Revel ¹, Jan Eglinger ¹, Michael B. Stadler ¹ · ³, Luca Giorgetti ¹, Jeffrey A. Chao ¹ · ⁵ 🌣 🖾

- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- 2 University of Basel, 4003 Basel, Switzerland
- 3 Swiss Institute of Bioinformatics, 4058 Basel, Switzerland

Introduction

Nature Reviews | Molecular Cell Biology

Challenges in the study of mRNA decay

- Degradation occupies only a small fraction of mRNAs lifetime
- High variability in decay rates between different mRNAs
- Limited understanding of temporal and spatial requirements for mRNA turnover

Open questions

- Which mRNA degradation pathways are affected in specific physiological and pathological conditions?
- Where does mRNA decay take place?

Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution

Susanne Kramer*

Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany *Nucleic Acids Research*, Volume 45, Issue 7, 20 April 2017, Pages e49,

A long mRNA as a reporter for mRNA metabolism

Technical controls and the definition of a yellow spot

Subcellular localization and mRNA decay rates

Translational inhibition by cycloheximide and puromycin

Inducible RNAi depletion of XRNA

Detection of mRNA decay intermediates in mammalian cells

Technology

Molecular Cell

The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells

Ivana Horvathova 1, 2, 4, Franka Voigt 1, 4, Anna V. Kotrys 1, Yinxiu Zhan 1, 2, Caroline G. Artus-Revel 1, Jan Eglinger 1, Michael B. Stadler 1, 3, Luca Giorgetti 1, Jeffrey A. Chao 1, 5 A

- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- ² University of Basel, 4003 Basel, Switzerland
- 3 Swiss Institute of Bioinformatics, 4058 Basel, Switzerland

TREAT imaging of mRNA degradation in single cells

Half-life measurement of TREAT mRNA in single cells

TREAT siRNA transcripts are rapidly degraded in the cytoplasm

TREAT imaging of siRNA-mediated endonucleolytic cleavage in live cells

TREAT transcripts are not degraded in P-Bodies

TREAT transcripts are not degraded in P-Bodies during stress

Stabilization of TREAT transcripts during stress and translation inhibition

Potential Applications

- TREAT may uncover novel role for endonucleases in mRNAs decay
- Reveal novel aspects of the coordination between RNA localization and degradation
- Track mRNAs movements and connect it with their stability
- Elucidate aspects of the interplay between cytoplasmic mRNA turnover and RNA biogenesis in the nucleus

Limitations

- siRNA needed to shorten the half life of transcripts
- Difficulty in tracking decay during mRNA movements
- Need to test TREAT with endogenous transcripts