Forming molecular memories;
Record-seq

Technical Journal Club

Daniel Heinzer
January 29t 2019



DNA as data storage medium

Encoding data in DNA

How a digital file’s binary code can be converted into a ‘genetic file’ and stored as strands of DNA.

1. Coding

A digital file’s binary code is
translated into pairings of DNA
bases, abbreviated A {adenine),
C {cytosine), G (guanine) and T
{thymine). These form the rungs
that make up the DNA sfrands
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2. Synthesis and storage

A synthetic biological engineering
company builds DNA strands
mafching the sequence of digital
code, These can be held indefinitely
in cold storage

3. Retrieval and decoding

DMA is run through a sequencer
which returns the generic code.
This is then translated back to
binary

G AT T A C A

¥ ¥ ¥ Y ¥

0% 00 11 11 00 10 OO0



DNA as data storage medium

STORAGE LIMITS

Estimates based on bacterial genetics suggest that digital DNA
could one day rival or exceed today’s storage technology.
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DNA as data storage medium

- In vitro synthesized DNA can be used to store information

- Can the system be adapted to organisms?



DNA based data storage in organisms
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Nufiez et al., 2016, Molecular cell

Casl1-Cas2 protein complex captures 30 —
40 base pair segments of foreign DNA and
catalyzes their integration into the host
genome (of E. Coli) in the CRISPR array as
unique spacer seguences.



Papers

1.) CRISPR-Cas encoding of a digital movie into the genomes
of a population of living bacteria



LETTER

doi:10.1038/nature23017

CRISPR-Cas encoding of a digital movie into the
genomes of a population of living bacteria

Seth L. Shipman!23, Jeff Nivalal:?, Jeffrey D. Macklis? & George M. Church!-?

2017

Use of Cas1—Cas2 system to encode pixel values of black and white images and a short
movie into the genome of a population of living bacteria

Uncovering underlying principles of the CRISPR-Cas adaption system, including
sequence determinants of spacer acquisition



Image pixel values stored in a nucleotide code

Image pixel values were stored in a nucleotide code as synthetic

oligonucleotides and electroporated into a population of bacteria
(overexpressing Cas1-Cas2 and harbouring a functional CRISPR array)
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Image pixel values stored in a nucleotide code

Protospacer set up:
- PAM to increase efficiency of acquisition and define direction of spacer insertion
- Pixet (consisting of 4 nucleotides) serves as a barcode defining a set of pixels in the image.

- Each following nucleotide (28 per protospacer) encodes another colour of a pixel, distributing a 56x56
pixel image across 112 oligonucleotides
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Image pixel values stored in a nucleotide code

I casl -cas2

Pooled oligonucleotides were electoporated into a population of E. Coli, grown overnight and a sample was
sequenced

Newly acquired spacers were bioinformatically extracted

655,360 reads
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GIF pixel values stored in a nucleotide code

Using the same principle, slightly differently encoding and optimized Protospacer segeunces, they tried to
store the information of a GIF into a population of bacteria

a GC ~50%, no mononucleotide
repeats >3 bp,
no internal PAMs

GCGACGTAGACTCTCTCGACAATAGGTTACTGA
1 2 4 5 6 7 9 1

Pixet However, no encoding of the frame

1 7 5 N9 Binary (reversed) Trick:  Electroporate the bacteria over 5 days, each

10,000,000 day using protospacer for another frame
Bases Bases

31+32 33-35
00=C 0000 =TGA / DNA

01=T 1000 =AGA integration

10=A 0100 = TAA LR
11=G 1100 = CAC ‘
0010 = GAC integration ’

1010 = AGC host factor

0110 = GGA _

1110 = TGG l Viral
memory
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Encoded GIF




GIF pixel values stored in a nucleotide code

Again, sample was sequenced, and a complex analysis based on permutation for each position was
applied to recover the GIF:

Recalled GIF

h a ! :?-j :‘:"-:5?.5 i

Again, depending on the read depth, they were capable
to recall the GIF with a <90% accuracy.

Insertion of spacers on different time points led to
a physical arrangement of temporal information
about the frame
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Key points Paper 1

e system can capture and stably store practical amounts of real data
within the genomes of populations of living cells.

e CRISPR arrays are capable of inserting DNA snippets, yielding
temporal information about an event.



Papers

2.) Direct CRISPR spacer acquisition from RNA by a natural
reverse transcriptase-Casl fusion protein



RESEARCH ARTICLE SUMMARY 2016

GENE EDITING

Direct CRISPR spacer acquisition
from RNA by a natural reverse
transcriptase-Casl fusion protein

Sukrit Silas,* Georg Mohr,” David J. Sidote, Laura M. Markham,
Antonio Sanchez-Amat, Devaki Bhaya, Alan M. Lambowitz,} Andrew Z. Fire{

- sought to determine whether some CRISPR-Cas systems build CRISPR arrays through the acquisition
of spacer sequences from RNA rather than DNA

- in some CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT), suggesting the

possibility of a concerted spacer integration mechanism involving Cas1 integrase activity and the
reverse transcription of RNA to DNA.

- This would enable the acquisition of new spacers from RNA and outline a host-mediated
mechanism for reverse information flow from RNA to DNA.



CRISPR array with RNA derived spacers?

DNA spacer integration by Casl/Cas2 RNA spacer integration by RT-Casl/Cas2
RT-Casl (gas2
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CRISPR array with RNA derived spacers?

Subject of study: Type IlI-B CRISPR locus in M. mediterranea (MMB-1), an easily cultured, nonpathogenic organism

that contains a RT-Casl—encoding gene.

A Overexpression constructs for MMB-1 Type liI-B
CRISPR adaptation genes

—> —>
0670 RT-Cas1 Cas2 CRISPRO3
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) D Il
RT-Cas1 “adaptation” genes
genome

Overexpression of the Cas1RT-Cas2 complex
and analysis of spacer acquisition in the
genomic CRISPR array CRISPR0O3 by means of
amplification of the region by PCR using
primers for the leader sequence and the first
native spacer followed by high throughput
sequencing
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B. Spacers acquired from a representative genomic locus in E. coli
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RT-Casl is an active reverse transcriptase

A. RT activity of wild-type and mutant RT-Cas1  B. RT activity of RT-Cas1 with various

proteins primers/templates
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Integration of 21nt sSRNA

B ¢DNA synthesis using cleaved

A Schematic of cDNA synthesis CRISPR DNA ligated to 21-nt ssRNA
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Key points Papers 1 & 2

e MMB1 RT-Cas1 fusion protein can mediate the direct acquisition of
spacers from donor RNA, using the Casl integrase activity to directly
ligate an RNA protospacer into CRISPR DNA repeats.



Papers

3.) Transcriptional recording by CRISPR spacer acquisition from
RNA



ARTICLE

https://dol.org/10.1038/541586-018-0569-1

Transcriptional recording by CRISPR
spacer acquisition from RNA

Florian Schmidt!, Mariia Y. Cherepkova' & Randall J. Platt"?* 2018

- Can the presented systems be repurposed to acquire spacers from endogenous RNA
allowing to store transcriptional information over time in CRISPR arrays?



RNA derived spacer acquisition?

a
-"/r Transcriptional recording plasmid E. coli genome \\
Prriae Leadear
_thHLcmecne}ng_
Direct repeat
Hetarologous
expression Intraceliular RMA
L S, e T ]
RT-Cas1-Cas2
protein complex
EMA integration
complex formation
RT—-Cas1-Cas2—
BMA
AMA acquisition
MA to DiNA)
R ° Movel spacer
Parantal - D Transcriptional record
CRISPR array

-

stored in DMA j

o

Tranzcript
aburnd ance

Spacer
abundarce

Transcriptional snapshots (RMNA-saq)
ty £ ta ty [

Transcriptional records in CRISPR arays (Record—seq)
I I i

Time ' I
efecle clocle®

m Geng 1
m Gana 2

= Gane N

Transient
information

m Gens 1
m Gana 2

m Gene N

Permanant
information



MMB-1 did not work in E.Coli, alternatives?

P leader spacer induced: reads
S
~{(Rr-Cas Y Cos J-ue{ MTTH S0 ¥ ety
- DR > > pacer
EJ’.pEndEd —
K align 4
parental ==l
plasmid genome

identify RT-Cas1 orthologs heterologuosly express codon optimized RT-Cas1 amplify CRISPR array, size select, idertify novel spacers
and select divergent subset and Cas2 with corresponding CRISPR array in E. coli and sequence expanded arrays and align to plasmid and genome

121 RT-Cas1 orthologs were identified, 14 of which were chosen for functional characterization
According RT-Cas1-Cas2 was overexpressed, and expression was induced

Spacer acquisition was determined by amplification, size selection and sequencing of expanded arrays



MMB-1 did not work in E.Coli, alternatives?

Candidatus Accumulibacter sp. BA-97 4

Fusicatenibacter saccharivorans
Fusicatenibacter saccharivorans ARRAYZ2

Eubacterium saburreun DSM 3986 -
Eubacterfum saburreum DSM 3986 ARRAYZ
Bacteroides fragilis strain 514 4
Campylobacter fetus subsp. Fetus -
Teredinibacter turmerae TE412 -
Woodsholea maritima

Desulfarculus baarsil DSM 2075 4
Azospirilum lipoferum 48 4
Azospirilum lipoferum 48 ARRAYZ -
Cellulomonas bogoriensis 6984 4
Micromonaspora rosaria -
Micromonospora rosaria ARRAY2 4
Candidatus Accumulibacter sp. SK-02 4
Tolypothrix campylonemoides -
Oscillatoriales cyanobacterium -

@O Autoinduction 12 h
B Autoinduction 24 h

m PTG 12h
mm PTG 24 h

©

aligning spacers per milion reads (log-scale)

O coding sequence - spacer O coding sequence » spacer

Fusicatenibacter saccharivorans Fusicatenibacter sacchanvorans

wons, e PR T-CaEs1-Cas2 plasmid _ RT-Cas1-Cas2 plasmid
= ARRAYA : ‘I_.-".,-"hRRAYE

RT-Cas1-Cas2 of Fusicateribacter saccharivorans was the only
Ortholog that acquired Spacers in E.Coli.

=> FsRT-Casl1-FsCas2



Workflow of Record-seq

Transcriptional recording

>
Prac Leader
—:E:SRT—Cas ﬂ{FsCasQ]—L[:J—
DR

Naive recording
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E. coli BL21(DE3)

Workflow of Record-seq:

SENECA Sequencing and analysis
>
Empty Expanded Induced: —  +
Starting material — —p[}- —-»{ [} I
P = = E]
_ j Expanded - e
Restriction digest —{]- -7} —H- 1
and Parental -|— —
adapter ligation —» — —»{— Spacers =——
— .
PCR amplification  —pwf— —_— @ < Align -
T
N N
} }
Final product [— —— Plasmid-aligning Genome-aligning
spacers spacers

1.) Induce expression of FsRT-Cas1-Cas2 over 12h
2.) SENECA (‘selective amplification of expanded CRISPR arrays; see next slide)
3.) Size selection, sequencing and analysis by alignment to available transcripts



SENECA
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Characteristics of FsSRT—Cas1—Cas2 spacer acquisition

Transcriptional racording SENECA Sequencing and analysis b
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Characteristics of FsSRT—Cas1—Cas2 spacer acquisition

f g
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No PAM necessary
(has been previously described for type Il CRISPRS systems)



FsRT—Cas1—Cas2 acquires spacers directly from RNA

C
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Recording of arbitrary transcripts using Record—seq

Preia Pr1ac Leader PLuxr Preta P7lac Leader
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To assess the potential of FsSRT—Cas1—Cas2 for quantitatively recording transcriptional events, they used an inducible
expression systems to determine whether spacers were being acquired according to RNA abundance.

Results show that CRISPR spacer acquisition from RNA can generate a quantifiable record of cumulative transcript
abundance



Record—seq shows cumulatively highly expressed genes

replicate 1

20+

154

10+

P=0.999
#=0.555

0 2 10 15

replicate 2

Replicate correlation between
two biological replicates

20

cumulative normalized spacer count

0 2_;.' o' e = replicate 1
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" :‘ e = Monte Carlo bounds
500 1500 2500 3500 4500

E. coliBL21(DE3) genes
genes sorted by decreasing expression

Spacers are preferentially acquired from
highly expressed genes



Transcriptome-scale recording reveals cell behaviours

B Untreated
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Sentinel cells encode transient herbicide exposure
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Sentinel cells encode transient herbicide exposure

RNA-seq Record-seq
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Benefits of Record-seq

Ability to heterologously express orthologous RT-Cas1-containing CRISPR acquisition systems in order to capture
and store RNA species within DNA in an abundance-dependent process;

Capacity to efficiently and scalably read out molecular histories permanently stored in DNA and reconstruct
transcriptome-scale events;

Application of this technology for recording specific inputs, such as virus infection or any single or orthogonal set
of inducible expression system

Potential applications of this system for creating ‘sentinel’ cells for medical or biotechnology applications. Even if
specific external stimuli cannot be recorded directly, the transcriptome scale molecular signatures recorded within
a bacterial population may be sufficient to report meaningful physiological states



Remaining technical challenges of Record-seq

- Majority of spacers are acquired from highly overexpressed plasmid-borne genes, necessitates deeper sequencing when
interested in transcriptome-scale events.

- Low efficiency of FsSRT—Cas1—Cas2 CRISPR spacer acquisition from RNA necessitates the use of populations on the order of ten
million bacteria for Record-Seq, thereby precluding applications in single cells

- Method is currently semi-quantitative, which could be improved through the implementation of unique molecular identifiers and
spike-ins enabling absolute quantification.

- Low efficiency of Type Il CRISPR spacer acquisition in general also leads to only a minor fraction of CRISPR arrays acquiring more
than a single spacer, and thus valuable temporal information is currently not preserved.

- Limitations of host cells to tolerate and maintain large DNA records of dynamic transcriptome-scale information within single
cells and the computational framework to reconstruct meaningful transcriptional and lineage histories.

These challenges currently preclude transcriptome-wide recordings within single cells akin to the current state of RNA sequencing
technologies. Despite these challenges, Record-Seq facilitates transcriptome-scale recordings within a population of bacteria.



Outlook Record-seq

- CRISPR spacer acquisition components could be introduced into other cell types (including eukaryotic
cells) to record the molecular sequences of events, and lineage paths, that gives rise to particular cell
behaviours, cell states and types

- Usage of cells engineered to perform Record-seq to monitor gene expression in difficult-to-access
environments, such as the human gut, or to identify gene-expression profiles that are a signature of
disease or abnormality



Thank you for your attention!
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