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Chromatin Organization

Nucleosome:
147 bp of DNA wrapped
around an octamer of
four core histone proteins:

H2A, H2B, H3, and H4

10-nm “beads-on-string”
chromatin fiber

Compaction of DNA into DNA-protein assemblies to fit nucleus

Regulated by chemical modifications

Mainly N-terminal tail of histone core proteins

Acetylation, methylation,...

Depending on modification, compactation is increased or decreased
- DNA replication, cell division, DNA repair,...

Organization of Eukaryotic Chromosomes

DNA double
helix

DNA wrapped
around histone

Nucleosomes
coiled into a
chromatin
fiber

Further
condensation
of chromatin

Duplicated
chromosome

https://courses.lumenlearning.com/wmopen-

biologyl/chapter/chromosomes-and-dna-packaging/



Chromatin Organization

Folding and unfolding for
transcriptional activity

But how? Where? When? Why?

Organization of Eukaryotic Chromosomes

DNA double
helix

DNA wrapped
around histone

Nucleosomes
coiled into a
chromatin
fiber

Further
condensation
of chromatin

Duplicated
chromosome
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Chromatin Organization

Lakadamyali & Cosma 2020

Folding and unfolding for
transcriptional activity

But how? Where? When? Why? b
H3K9%ac Wide field
Widefield image of nucleus:
- Heterogenous staining d

- local hotspots
- Optical diffraction limit
—> structures too small to visualize
with classic light microscopy

-

Bertocchi 2013

Xu 2018




Chromatin Organization

Lakadamyali & Cosma 2020
a H2B i ~Diady

Folding and unfolding for O N b
transcriptional activity 3. AN STORM imaging:
But how? Where? When? Why? 1 # Stochastic Optical

Reconstruction Microscopy
H3IK9%ac

Xu 2018

https://www.microscopyu.com/tutorials/stochastic-

optical-reconstruction-microscopy-storm-imaging
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A. Transcriptionally active
histone acetylation marks:
H3K9ac, H3K2/7ac, H3ac,
and H4ac

B. Transcriptionally active

histone methylation marks:

, H3K4Ame?2,
H3K4me3, and H3K36me3

C. Transcriptionally repressive

histone methylation marks:

H3K27me3 and H3K9me3

H3K4

H3 lysine 4

Genome-wide
histone marks that
structure DNA

H3K4me2 H3K4me3
Me

H3 lysine 4 H3 lysine 4
dimethylation trimethylation

Collins 2019



A. Transcriptionally active
histone acetylation marks:
H3K9ac, H3K2/7ac, H3ac,
and H4ac

B. Transcriptionally active
histone methylation marks:
, H3K4me2,

> Euchromatin

H3K4me3, and H3K36me3j

C. Transcriptionally repressive
histone methylation marks:
H3K27me3 and H3K9me3

H3 lysine 4

Heterochromatin

Genome-wide
histone marks that
structure DNA

H3K4me2 H3K4me3
Me

H3 lysine 4 H3 lysine 4
dimethylation trimethylation

Collins 2019



A. Transcriptionally active

histone acetylation marks:
H3K9ac, H3K2/7ac, H3ac,
and H4ac

B. Transcriptionally active
histone methylation marks:
H3K4mel, H3K4me2,
H3K4me3, and H3K36me3

Widefield images are not very informative

C. Transcriptionally repressive
histone methylation marks:
H3K27me3 and H3K9me3




H3IK9%ac

A. Transcriptionally active
histone acetylation
marks: H3K9ac,
H3K27ac, H3ac, and
H4ac

B. Transcriptionally active
histone methylation
marks: H3K4me1l,
H3K4me2, H3K4me3,
and H3K36me3

C. Transcriptionally
repressive histone
methylation marks:
H3K27me3 and
H3K9me3

Highly condensed large clumps (100s nm to um)
enriched at the periphery of the nucleus & nucleolus
- heterochromatin (existing EM evidence)




A. Transcriptionally active
histone acetylation
marks: H3K9ac,
H3K27ac, H3ac, and
H4ac

Spatially segregated and discrete
nucleosome nanoclusters of similar size

B. Transcriptionally active
histone methylation
marks: H3K4me1l,
H3K4me2, H3K4me3,
and H3K36me3

Highly heterogeneous and spatially
dispersed nucleosome nanodomains

C. Transcriptionally
repressive histone
methylation marks:
H3K27me3 and
H3K9me3

Highly condensed large clumps (100s nm to um)
enriched at the periphery of the nucleus & nucleolus
- heterochromatin (existing EM evidence)

H3IK9%ac

Hik4mel

Observations true for chemical modification
independent of AA residue



q -H.}K‘Jac

A. Transcriptionally active
histone acetylation
marks: H3K9ac,
H3K27ac, H3ac, and LEH
H4ac

Spatially segregated and discrete
nucleosome nanoclusters of similar size B

B. Transcriptionally active
histone methylation
marks: H3K4me1l,
H3K4me2, H3K4me3,
and H3K36me3 C

Highly heterogeneous and spatially
dispersed nucleosome nanodomains Observations true for chemical

modification independent of

AA residue
C. Transcriptionally
repressive histone
methylation marks: D H3K9ac H3K4mel
H3K27me3 and " i
H3K9me3 | . l

Highly condensed large clumps (100s nm to um)
enriched at the periphery of the nucleus & nucleolus
- heterochromatin (existing EM evidence)
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A. Transcriptionally active
histone acetylation
marks: H3K9ac,
H3K27ac, H3ac, and
H4ac

Spatially segregated and discrete
nucleosome nanoclusters of similar size

B. Transcriptionally active
histone methylation
marks: H3K4me1l,
H3K4me2, H3K4me3,
and H3K36me3
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A. Transcriptionally active
histone acetylation
marks: H3K9ac,
H3K27ac, H3ac, and
H4ac

Spatially segregated and discrete
nucleosome nanoclusters of similar size

B. Transcriptionally active
histone methylation
marks: H3K4me1l,
H3K4me2, H3K4me3,
and H3K36me3

.
o FH3K4med
o L g HSKITJ:HES
mmmuz.’-{g ‘H3IK9med '
TH3Kdmel
' H3K3bme3

Highly heterogeneous and spatially
dispersed nucleosome nanodomains

C. Transcriptionally ASRENINTY) P m ;Il[]ean?l::,llrﬁg _TIO

repressive histone S Size of domain

methylation marks:

H3K27me3 and o o

H3k9me3 — Three Distinct Structural Characteristics of
Highly condensed large clumps (100s nm to pum) Higher-Order Chromatin Structure Formed
enriched at the periphery of the nucleus & nucleolus by Histone Marks in the Interphase Nuclei

- heterochromatin (existing EM evidence)



Transcriptionally active
histone acetylation
marks: H3K9ac,
H3K27ac, H3ac, and
H4ac

Transcriptionally active
histone methylation
marks: H3K4mel,
H3K4me2, H3K4me3,
and H3K36me3

Transcriptionally
repressive histone
methylation marks:
H3K27me3 and
H3K9me3

- heterochromatin

DNA much more compact
in some regions of nucleus

H3K9ac & H3K4me3
(transcriptionally active
marks) can be found in
regions with less DNA
signal = less condensation

H3K27me3 (repressive
methylation) colocalizes
with compact DNA

- heterochromatin

DMA

H3K9ac

H3K4me3

Merge

Colocalized Points




: : LN H4ac/RNAP 11 3K9%9ac/RIN/ H3IK4me3I/RNAPII H3K36me3/RNAP I
transcription activities A o oot calbes S SR

Active transcription detected
by (P)-RNA polymerase Il

Transcriptionally active Spdedentd D Tl ' | ' T LW
histone acetylation marks: g I " : |
H3K9ac, H3K27ac, H3ac, and
H4ac

FEpS =

Transcriptionally active

histone methylation marks: SR T
H3K4mel, H3K4me2, B H3K27me3/RNAPII
H3K4me3, and H3K36me3

'il'". 'T "j' " —L g " : ... ? '7'-'.,‘ -

H3IRYme3/RNAPII C

- RNA polymerase |l colocalizes
with active histone marks,
but less with repressive ones

Degree of Colocalization




Mitosis

* Observations of the 3 types of structures
have been made in interphase cells
- transcriptional activity
= accessibility for enzymes
- chromatin is not extremely compact

* Mitosis: peak-compactation needed

Organization of Eukaryotic Chromosomes

DNA double
helix

DNA wrapped
around histone

Nucleosomes
coiled into a
chromatin
fiber

Further
condensation
of chromatin

Duplicated
chromosome

https://courses.lumenlearning.com/wmopen-

biology1l/chapter/chromosomes-and-dna-packaging/



) ] A H3K9%ac H4ac H3K4me3 H3K27me3 H3K9me3
Mitosis
Transcriptionally active
histone acetylation marks:
H3K9ac, H3K27ac, H3ac, and
H4ac

Histone marks

Transcriptionally active

histone methylation marks:

H3K4mel, H3K4me2,

H3K4me3, and H3K36me3 B

DNA




) ] A H3K9%ac H4ac H3K4me3 H3K27me3 H3K9me3
Mitosis
Transcriptionally active
histone acetylation marks: discrete
H3K9ac, H3K27ac, H3ac, and
H4ac

Histone marks

Transcriptionally active

histone methylation marks: .

H3K4me1, H3K4me?2, dispersed

H3K4me3, and H3K36me3 B

DNA

— Despite highly condensed state of DNA:
» all markers can be found
» again very discrete pattern for active
acetylation marks
- Same pattern of domain-forming in mitosis
and interphase
— Conservation of important patterns during
cell division?




Spatial proximity between different histone marks

active active active active
acetvlation methylation acetylation methylation
A H3K27me3/H3KYac H3K27me3/HIK4me3 H3Kk4me3/H3IK%ac B
F < 0.0001
Transcriptionally active 0.4 P < 0.0001

histone acetylation marks:
H3K9ac, H3K27ac, H3ac, and
H4ac

o
w
i

P=0.03

Transcriptionally active
histone methylation marks:
H3K4mel, H3K4me?2,
H3K4me3, and H3K36me3

g

Degree of Colocalization
o o
=2 (8]

0.0-
< e )
e y & & &
& y A & b
B P il ¢ Wria shucad 4 oo " SV R ¥
Mostly not colocalizing ~ Mostly not colocalizing  Sometimes colocalizing
Ca 20% Cal7% Ca33%

- The 2 active chemical modifications colocalize best
- However, not perfectly
- Distinct domains?



Conclusions

* resolution of ¥20-30 nm in the nucleus of single mammalian cells

* genome-wide higher-order chromatin structure at distinct epigenomic states

e ) active sites
e 1 «silenced» site
—> Little overlap

 preserved features during mitosis =2 inheritance of epigenomic modifications
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Chromatin re-organization as response to environment?

* Chromatin re-organization as cue for transcriptional changes
- Changes in phenotype & behaviour of cells

* Physiology: stem cells in different tissues

* Pathology: changes in ECM, cell composition,...
* Medicine: artificial materials like protheses

* Lab: cell culture dishes and coatings



Chromatin re-organizati

* Quantification: Voronoi
tessellation-based image
segmentation

https://www.microscopyu.com/tutorials/stochastic-
optical-reconstruction-microscopy-storm-imaging

on as response to environment?

/|

Polygons surrounding each signal

Center of point spread function

https://philogb.github.io/blog/2010

ellation/

i-tess

/02/12/vorono



Chromatin re-organizati

e Quantification: Voronoi
tessellation-based image
segmentation

on as response to environment?
RTINS Lo
Ras A hee AN
~. ‘ “) 1‘- ,.h
[ INEA 25
(P o

Adapted from

/%

https://www.microscopyu.com/tutorials/stochastic-
optical-reconstruction-microscopy-storm-imaging

Center of point spread function

/ Polygons surrounding each signal

https://philogb.github.io/blog/2010

- Threshold for only small polygons

ellation/

i-tess

/02/12/vorono



Chromatin re-organizat

e Quantification: Voronoi
tessellation-based image
segmentation

loN 3

response to environment?

N 2

https://philogb.github.io/blog/2010

Adapted from

https://www.microscopyu.com/tutorials/stochastic-
optical-reconstruction-microscopy-storm-imaging

Center of point spread function

Polygons surrounding each signal

- Threshold for only small polygons
—> Colour code same colour
if spatial connection is present

ellation/

oi-tess

/02/12/voron



Chromatin re-organization as response to environment?

* Quantification: Voronoi
tessellation-based image
segmentation

https://philogb.github.io/blog/2010

/02/12/voronoi-tessellation/

Adapted from

Polygons surrounding each signal

- Threshold for only small polygons
_ —>Colour code same colour
e g . if spatial connection is present

Heo 2020



* Quantification: Voronoi
tessellation-based image
segmentation

STORM

Heo 2021

Polygons surrounding each signal

Adapted from

-V

https://philogb.github.io/blog/2010

/02/12/voronoi-tessellation/

—>Small polygons = polygon density P

—>Heatmap of density

Small polygon = Dense

Large polygons = Not dense



(a) hMSC: human mesenchymal stem cell

Influence of substrate stiffness Mo @ M @y e metheenated luroric add hdroges

on nano-scale chromatin spatial ~70 GPa Glass | s a0kPa) Soft 3kPa)
organization




(a) hMSC: human mesenchymal stem cell
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(a)

Influence of substrate stiffness hMSC

hMSC: human mesenchymal stem cell

r@, MeHA: methacrylated hyaluronic acid hydrogels

MeHA
i ) m ,_@l/"\
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Influence of substrate stiffness on specific chromatin domains = transcriptional activity

(a) Density Map (b) Total Mumber of Localizations/Area (Momm.)
Glass _ : Stiff — Soft o _ Whole o - Inner o  Border

Compared to glass:

e Active histone mark
(H3K4me3):
N on stiff substrate
J on soft substrate

* Repressive mark
(H3K27me3):
J on stiff substrate
(mainly nucl. centre)
N on soft substrate
(mainly nucl. periph.)

0.09 0A8 0325 0.4 07 11 18 2 (Voronol Polygon Densiy; 1075y i)



Influence of substrate stiffness on specific chromatin domains = transcriptional activity

(a) Density Map (b) Total Mumber of Localizations/Area (Momm.)
Glass Stiff : : Soft o _ Whole o - Inner o  Border

Compared to glass:

e Active histone mark
(H3K4me3):
N on stiff substrate
J on soft substrate

* Repressive mark
(H3K27me3):
J on stiff substrate
(mainly nucl. centre)
N on soft substrate
(mainly nucl. periph.)

Active
Hakdrmed

18

3 [vYoronoi Polygon Densily, 1075 Y )

H2B Density Map

of
peripheral chromatin
on soft substrate

Ctrl



Influence of substrate stiffness on specific chromatin domains = transcriptional activity

(a) Density Map (b) Total Mumber of Localizations/Area (Momm.)
Glass Stiff — Soft o _ Whole o - Inner o  Border

Compared to glass:

e Active histone mark
(H3K4me3):
N on stiff substrate
J on soft substrate

* Repressive mark
(H3K27me3):
J on stiff substrate
(mainly nucl. centre)

Active
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Influence of substrate stiffness on specific chromatin domains = transcriptional activity

(a) Density Map (b) Total Mumber of Localizations/Area (Momm.)
Glass Stiff : Soft o _ Whole o - Inner o  Border

Compared to glass:

e Active histone mark
(H3K4me3):
N on stiff substrate
J on soft substrate

* Repressive mark
(H3K27me3):
J on stiff substrate
(mainly nucl. centre)
N on soft substrate

Active
Hakdrmed

(d)

C},‘.g? & &

5
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@
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* Probably due to EZH2
activity (methylates Hypothesis:

Substrate stiffness |,

- Methyltransferase EZH2 activity T
— chromatin condensation

and accumulation in periphery

H3K27)
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Hypothesis:

Substrate stiffness T

- Methyltransferase EZH2 activity {
- chromatin condensation (b) Time after stiffening
and relocalization to centre

Dynamics?

Oh 2h 4h 6h 18h 24h 48h

stiffening hydrogel system:
from a soft (~3kPa) to a stiff (~30kPa) mechanical state

H2B Density Map

0.25 04 07 11 1.8 3 5 (Voronoi Polygon Density; 107 x nnm?)



Hypothesis:
Substrate stiffness T

. Dynamics?
- Methyltransferase EZH2 activity { Y
- chromatin condensation (b) Time after stiffening

and relocalization to centre 0h 20 an el el e —l

stiffening hydrogel system:
from a soft (~3kPa) to a stiff (~30kPa) mechanical state

H2B Density Map

First 4-6 h: most chromatin in nucleus periphery
Then slow redistribution also into nucleus centre

0.25 04 07 11 1.8 3 5 (Voronoi Polygon Density, 107 x nnr?)

(c)

Ratio of the total number of
localizations of H2B

2h 4h 6h 18h 24h 48h
Time after stiffenina

(Border/Inner, norm. to Ctrl)
=
n




Hypothesis:
Substrate stiffness T

. Dynamics?
- Methyltransferase EZH2 activity { Y
- chromatin condensation (b) Time after stiffening
and relocalization to centre o 2 Sl o Lkl S ———
stiffening hydrogel system: FE%
from a soft (~3kPa) to a stiff (~30kPa) mechanical state z
First 4-6 h: most chromatin in nucleus periphery )
Then slow redistribution also into nucleus centre *
Heterochromatin condensation decreases in centre & periphery _ _ _ _ oronol Polygon Density; 107 x nar?)
& precedes changes in redistribution (starting at 2h) ©
S £ 157 _ Time after stiffening
2% B = 2n 4h  6h 18h 24h 48h
E N = c T — 0 A
ST g 14 SER
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Hypothesis: The role of cell contractility
Substrate stiffness T

- Methyltransferase EZH?2 activity {
- chromatin condensation {, ?
—> and relocalization to centre T 5

(a) Time after stiffening

Ctri

L B
0.25 0.41 0.67 1.1 1.8 3 5 (Voronoi Polygon Density; 107 x nnms)




Hypothesis:

Substrate stiffness T

- Methyltransferase EZH?2 activity {
— chromatin condensation {,

— and relocalization to centre

Inhibiting cellular contractility
- Relocalization from border to centre .

- Heterochromatin density does not decrease " Fe I3 oo R g [N, A S

The role of cell contractility

Cell Contractility

(a) Time after stiffening

Oh 4h | 6h

¢ Y27632 = ROCK inhibitor
Ml - decreases cell contractility
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Hypothesis: The role of cell contractility
Substrate stiffness T

- Methyltransferase EZH2 activity {

= chromatin condensation | requires actomyosin based cellular contractility
- and relocalization to centre

(a) Time after stiffening

Inhibiting cellular contractility O
- Relocalization from border to centre .

- Heterochromatin density does not decrease
Y27632 = ROCK inhibitor

= decreases cell contractility

0.25 0.41 0.67 1.1 1.8 3 5 (Voronoi Polygon Density; 107 x nmr=)
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What about other B e — fluid-flow induced
environmental cues? ' shear stress (FSS)

—
0
e

varying magnitude (1- 5 dyne/cm:)and ~ © __ct 1D/0.5h ___5D/0.5n __1Di2n
duration (0.5 - 2 hours) Lo T

(c)
Shear stress leads to:
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isolated tenocytes =2 cultured on glass for 48 h

e young healthy: distribution over nucleus, some condensed domains
e young tendinosis: more condensed H2B signal, & higher in periphery
* Aged, healthy: distribution over nucleus, few condensed domains

- Possible reasons for differences?
— Changes in ECM, hypoxia, inflammation

(a) . (b) 25 -
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Chromatin structure
in aging and diesease



isolated tenocytes =2 cultured on glass for 48 h -
e young healthy: distribution over nucleus, some condensed domains Chromatin structure

« young tendinosis: more condensed H2B signal, & higher in periphery € healthy on softs. N aging and diesease
* Aged, healthy: distribution over nucleus, few condensed domains < healthy on stiff s.

- Possible reasons for differences?
—> Changes in ECM, hypoxia, inflammation
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isolated tenocytes =2 cultured on glass for 48 h -
e young healthy: distribution over nucleus, some condensed domains Chromatin structure

 young tendinosis: more condensed H2B signal, & higher in periphery N aging and diesease
* Aged, healthy: distribution over nucleus, few condensed domains
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isolated tenocytes =2 cultured on glass for 48 h -
e young healthy: distribution over nucleus, some condensed domains Chromatin structure

* young tendinosis: more condensed H2B signal, & higher in periphery N aging and diesease

* Aged, healthy: distribution over nucleus, few condensed domains (a) ,
oung

Tendinosi Aged

proinflammatory cytokines
promote tendon inflammation
processes in early tendon repair

- Possible reasons for differences?
— Changes in ECM, hypoxia, inflammation

© 24 h of cytokine treatment on healthy 03 041 052 067 08 11 15 2
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How well can aged / diseased tenocytes

adapt to a change of the environment?
- Change in stiffness

- Young helathy tenocytes show drastic changes:

» dispersion
» de-compaction

- Aged tenocytes show same behaviour
but less drastic

- Diseased (tendinosis) tenocytes
> Did not relocalize
> No de-condensation at border

- loss of mechanical sensitivity
with degeneration

Cellular reactivity to changes in environment
in age and disesae

(a) (b) H2B Density Map
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Conclusions

* Chemical and physical cues in the environment influence
the pattern of histone modification
and subsequently chromatin organization

* In age and disease the adaptation is impaired

* The chromatin organization in aged and diseased cells may be altered
due to changes in their microenvironment
(oxygen levels, stiffness, inflammation)
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