Super-Resolution Imaging of Nano-Scale Chromatin Organization

Journal Club 17th August 2021 Alexandra Bentrup

Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells

Jianquan Xu,1 Hongqiang Ma,1 Jingyi Jin,1,2 Shikhar Uttam,3 Rao Fu,1,4 Yi Huang,5 and Yang Liu1.6,*

2018

New Results

Chemo-Mechanical Cues Modulate Nano-Scale Chromatin Organization in Healthy and Diseased Connective Tissue Cells

Su-Jin Heo, Shreyasi Thakur, Xingyu Chen, Claudia Loebel, Boao Xia, Rowena McBeath, Jason A. Burdick, Vivek B. Shenoy, Robert L. Mauck, Melike Lakadamyali

doi: https://doi.org/10.1101/2021.04.27.441596

This article is a preprint and has not been certified by peer review [what does this mean?].

Nucleosome: 147 bp of DNA wrapped around an octamer of four core histone proteins: H2A, H2B, H3, and H4

10-nm "beads-on-string" chromatin fiber

Compaction of DNA into DNA-protein assemblies to fit nucleus

- Regulated by chemical modifications
- Mainly N-terminal tail of histone core proteins
- Acetylation, methylation,...
- Depending on modification, compactation is increased or decreased
 →DNA replication, cell division, DNA repair,...

biology1/chapter/chromosomes-and-dna-packaging, https://courses.lumenlearning.com/wmopen

Folding and unfolding for transcriptional activity

But how? Where? When? Why?

biology1/chapter/chromosomes-and-dna-packaging, https://courses.lumenlearning.com/wmopen

Folding and unfolding for transcriptional activity

But how? Where? When? Why?

Widefield image of nucleus:

- Heterogenous staining
 - → local hotspots
- Optical diffraction limit
 - → structures too small to visualize with classic light microscopy

Lakadamyali & Cosma 2020

Folding and unfolding for transcriptional activity

But how? Where? When? Why?

STORM imaging: Stochastic Optical Reconstruction Microscopy

https://www.microscopyu.com/tutorials/stochasticoptical-reconstruction-microscopy-storm-imaging

Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells

Jianquan Xu,1 Hongqiang Ma,1 Jingyi Jin,1,2 Shikhar Uttam,3 Rao Fu,1,4 Yi Huang,5 and Yang Liu1.6,*

2018

New Results

Chemo-Mechanical Cues Modulate Nano-Scale Chromatin Organization in Healthy and Diseased Connective Tissue Cells

Su-Jin Heo, Shreyasi Thakur, Xingyu Chen, Claudia Loebel, Boao Xia, Rowena McBeath, Jason A. Burdick, Vivek B. Shenoy, Robert L. Mauck, Melike Lakadamyali

doi: https://doi.org/10.1101/2021.04.27.441596

This article is a preprint and has not been certified by peer review [what does this mean?].

Genome-wide histone marks that structure DNA

B. Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

C. Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

B. Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

C. Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

Genome-wide histone marks that structure DNA

Euchromatin

Heterochromatin

B. Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

C. Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

Widefield images are not very informative

B. Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

C. Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

Highly condensed large clumps (100s nm to µm) enriched at the periphery of the nucleus & nucleolus → heterochromatin (existing EM evidence)

Spatially segregated and discrete nucleosome nanoclusters of similar size

B. Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

Highly heterogeneous and spatially dispersed nucleosome nanodomains

C. Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

Highly condensed large clumps (100s nm to µm) enriched at the periphery of the nucleus & nucleolus → heterochromatin (existing EM evidence)

Spatially segregated and discrete nucleosome nanoclusters of similar size

B. Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

Highly heterogeneous and spatially dispersed nucleosome nanodomains

C. Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

Highly condensed large clumps (100s nm to μm)
enriched at the periphery of the nucleus & nucleolus
→ heterochromatin (existing EM evidence)

Observations true for chemical modification independent of AA residue

Spatially segregated and discrete nucleosome nanoclusters of similar size

B. Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

Highly heterogeneous and spatially dispersed nucleosome nanodomains

C. Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

Highly condensed large clumps (100s nm to μm)
enriched at the periphery of the nucleus & nucleolus sheet heterochromatin (existing EM evidence)

Spatially segregated and discrete nucleosome nanoclusters of similar size

B. Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

Highly heterogeneous and spatially dispersed nucleosome nanodomains

C. Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

Highly condensed large clumps (100s nm to µm) enriched at the periphery of the nucleus & nucleolus → heterochromatin (existing EM evidence)

→ Three Distinct Structural Characteristics of Higher-Order Chromatin Structure Formed by Histone Marks in the Interphase Nuclei

B. Transcriptionally active histone methylation marks: H3K4me1,

and H3K36me3

H3K4me2, **H3K4me3**,

H3K9ac & H3K4me3
(transcriptionally active marks) can be found in regions with less DNA signal → less condensation

DNA much more compact

in some regions of nucleus

C. Transcriptionally repressive histone methylation marks:
H3K27me3 and
H3K9me3
→ heterochromatin

H3K27me3 (repressive methylation) colocalizes with compact DNA
→ heterochromatin

transcription activities Active transcription detected by (P)-RNA polymerase II

Transcriptionally active histone acetylation marks: H3K9ac, H3K27ac, H3ac, and H4ac

Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3C

→ RNA polymerase II colocalizes with active histone marks, but less with repressive ones

Mitosis

- Observations of the 3 types of structures have been made in interphase cells
 - → transcriptional activity
 - → accessibility for enzymes
 - → chromatin is not extremely compact
- Mitosis: peak-compactation needed

biology1/chapter/chromosomes-and-dna-packaging, https://courses.lumenlearning.com/wmopen

Mitosis

Transcriptionally active histone acetylation marks: H3K9ac, H3K27ac, H3ac, and H4ac

Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

Mitosis

Transcriptionally active histone acetylation marks: H3K9ac, H3K27ac, H3ac, and H4ac

discrete

Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

dispersed

Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3

large clumps

- → Despite highly condensed state of DNA:
 - > all markers can be found
 - again very discrete pattern for active acetylation marks
- → Same pattern of domain-forming in mitosis and interphase
- → Conservation of important patterns during cell division?

Spatial proximity between different histone marks

Transcriptionally active histone acetylation marks: H3K9ac, H3K27ac, H3ac, and H4ac

Transcriptionally active histone methylation marks: H3K4me1, H3K4me2, H3K4me3, and H3K36me3

Transcriptionally repressive histone methylation marks: H3K27me3 and H3K9me3C

- → The 2 active chemical modifications colocalize best
- → However, not perfectly
- → Distinct domains?

Conclusions

• resolution of ~20–30 nm in the nucleus of single mammalian cells

- genome-wide higher-order chromatin structure at distinct epigenomic states
 - 2 active sites
 - 1 «silenced» site
 - → Little overlap
- preserved features during mitosis \rightarrow inheritance of epigenomic modifications

Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells

Jianquan Xu,1 Hongqiang Ma,1 Jingyi Jin,1,2 Shikhar Uttam,3 Rao Fu,1,4 Yi Huang,5 and Yang Liu1.6,8

2018

New Results

Chemo-Mechanical Cues Modulate Nano-Scale Chromatin Organization in Healthy and Diseased Connective Tissue Cells

Su-Jin Heo, Shreyasi Thakur, Xingyu Chen, Claudia Loebel, Boao Xia, Rowena McBeath, Jason A. Burdick, Vivek B. Shenoy, Robert L. Mauck, Melike Lakadamyali

doi: https://doi.org/10.1101/2021.04.27.441596

This article is a preprint and has not been certified by peer review [what does this mean?].

2021

- Chromatin re-organization as cue for transcriptional changes
 - → Changes in phenotype & behaviour of cells

- Physiology: stem cells in different tissues
- Pathology: changes in ECM, cell composition,...
- Medicine: artificial materials like protheses
- Lab: cell culture dishes and coatings
- ...

 Quantification: Voronoi tessellation-based image segmentation

philogb.github.io/blog/ voronoi-tessellation, Polygons surrounding each signal Center of point spread function

https://www.microscopyu.com/tutorials/stochasticoptical-reconstruction-microscopy-storm-imaging

 Quantification: Voronoi tessellation-based image segmentation

Center of point spread function

philogb.github.io/blog/2010 Polygons surrounding each signal →Threshold for only small polygons

https://www.microscopyu.com/tutorials/stochasticoptical-reconstruction-microscopy-storm-imaging

Center of point spread function

 Quantification: Voronoi tessellation-based image segmentation

https://www.microscopyu.com/tutorials/stochasticoptical-reconstruction-microscopy-storm-imaging

 Quantification: Voronoi tessellation-based image segmentation

Polygons surrounding each signal

- →Threshold for only small polygons
- → Colour code same colour if spatial connection is present

 Quantification: Voronoi tessellation-based image segmentation

Polygons surrounding each signal

- →Small polygons = polygon density ↑
- → Heatmap of density

Influence of substrate stiffness on nano-scale chromatin spatial organization

hMSC: human mesenchymal stem cell

MeHA: methacrylated hyaluronic acid hydrogels

Influence of substrate stiffness on nano-scale chromatin spatial organization

- Histone 2B changes localization depending on substrate the cell is growing on
 - Overall signal / number of localizations stays the same
 - softer substrate, = more peripheral H2B localization
 - = heterochromatin
 - = silencing

Influence of substrate stiffness on nano-scale chromatin spatial organization

- Histone 2B changes localization depending on substrate the cell is growing on
 - Overall signal / number of localizations stays the same
 - softer substrate, = more peripheral H2B localization
 - = heterochromatin
 - = silencing
- Condensed chromatin mainly (but not only!) found in periphery of nuclei in the cells, especially on soft substrate
- Chromatin is more compact on soft than stiff hydrogel, independent of nuclear localization

Compared to glass:

- Active histone mark (H3K4me3):
 - ↑ on stiff substrate
 ↓ on soft substrate
- Repressive mark (H3K27me3):
 Jon stiff substra
 - ↓ on stiff substrate(mainly nucl. centre)↑ on soft substrate
 - (mainly nucl. periph.)

Compared to glass:

- Active histone mark (H3K4me3):
 - ↑ on stiff substrate ↓ on soft substrate
- Repressive mark (H3K27me3): ↓ on stiff substrate (mainly nucl. centre) ↑ on soft substrate (mainly nucl. periph.)
- Condensation of peripheral chromatin on soft substrate

_ Border

1.5 - Border

1.5

0.5

Compared to glass:

- Active histone mark (H3K4me3):
 - ↑ on stiff substrate

 ↓ on soft substrate
- Repressive mark
 (H3K27me3):
 ↓ on stiff substrate
 (mainly nucl. centre)
 ↑ on soft substrate
 (mainly nucl. periph.)
- Condensation of peripheral chromatin on soft substrate
- Probably due to EZH2 activity (methylates H3K27)

Repressive [®] H3K27me3 ↓

(Voronoi Polygon Density, 10⁻²x nm⁻²)

Compared to glass:

- Active histone mark (H3K4me3):
 - ↑ on stiff substrate
 - $oldsymbol{\downarrow}$ on soft substrate
- Repressive mark
 (H3K27me3):
 ↓ on stiff substrate
 (mainly nucl. centre)
 ↑ on soft substrate
 (mainly nucl. periph.)
- Condensation of peripheral chromatin on soft substrate
- Probably due to EZH2 activity (methylates H3K27)

Repressive ♥ H3K27me3 ↓

Substrate stiffness ↓

- → Methyltransferase EZH2 activity ↑
- → chromatin condensation and accumulation in periphery

Substrate stiffness ↑

- ightarrow Methyltransferase EZH2 activity \downarrow
- → chromatin condensation and relocalization to centre

stiffening hydrogel system: from a soft (~3kPa) to a stiff (~30kPa) mechanical state

Dynamics?

Substrate stiffness ↑

- ightarrow Methyltransferase EZH2 activity ightarrow
- → chromatin condensation and relocalization to centre

Dynamics?

stiffening hydrogel system: from a soft (~3kPa) to a stiff (~30kPa) mechanical state

First 4-6 h: most chromatin in nucleus periphery Then slow redistribution also into nucleus centre

Substrate stiffness ↑

- ightarrow Methyltransferase EZH2 activity ightarrow
- → chromatin condensation and relocalization to centre

Dynamics?

stiffening hydrogel system: from a soft (~3kPa) to a stiff (~30kPa) mechanical state

First 4-6 h: most chromatin in nucleus periphery Then slow redistribution also into nucleus centre

Heterochromatin condensation decreases in centre & periphery & <u>precedes</u> changes in redistribution (starting at 2h)

- Substrate stiffness ↑
- ightarrow Methyltransferase EZH2 activity ightarrow
- \rightarrow chromatin condensation \downarrow
- \rightarrow and relocalization to centre \uparrow

The role of cell contractility

Substrate stiffness ↑

- → Methyltransferase EZH2 activity ↓
- \rightarrow chromatin condensation \downarrow
- \rightarrow and relocalization to centre \uparrow

The role of cell contractility

Cell Contractility

Y27632 = ROCK inhibitor = decreases cell contractility

The role of cell contractility

Substrate stiffness ↑

- → Methyltransferase EZH2 activity ↓
- \rightarrow chromatin condensation \downarrow
- \rightarrow and relocalization to centre \uparrow

requires actomyosin based cellular contractility

0h

What about other environmental cues?

varying magnitude (1 - 5 dyne/cm₂) and duration (0.5 - 2 hours)

(c) Shear stress leads to:

→ chromatin relocalization to border

(d) + (e)

Low shear stress

→ Chromatin compactation

High shear stress

→ Less condensation

→ Very rapid changes within 30 mins

fluid-flow induced shear stress (FSS)

isolated tenocytes → cultured on glass for 48 h

- young healthy: distribution over nucleus, some condensed domains
- young tendinosis: more condensed H2B signal, & higher in periphery
- Aged, healthy: distribution over nucleus, few condensed domains
 - → Possible reasons for differences?
 - → Changes in ECM, hypoxia, inflammation

Chromatin structure in aging and diesease

isolated tenocytes \rightarrow cultured on glass for 48 h

- young healthy: distribution over nucleus, some condensed domains
- young tendinosis: more condensed H2B signal, & higher in periphery \leftarrow healthy on soft s.
- Chromatin structure in aging and diesease

- → Possible reasons for differences?
- → Changes in ECM, hypoxia, inflammation

isolated tenocytes -> cultured on glass for 48 h

- young healthy: distribution over nucleus, some condensed domains
- young tendinosis: more condensed H2B signal, & higher in periphery
- Aged, healthy: distribution over nucleus, few condensed domains
 - → Possible reasons for differences?
 - → Changes in ECM, **hypoxia**, inflammation

4 days under controlled oxygen levels

- > Young healthy tenocytes resemble diseased tenocytes
 - o Condensation 个个个
 - o Even more relocalization to border
- Young diseased tenocytes did not (fully) recover under normoxia

Chromatin structure in aging and diesease

isolated tenocytes → cultured on glass for 48 h

- young healthy: distribution over nucleus, some condensed domains
- young tendinosis: more condensed H2B signal, & higher in periphery
- Aged, healthy: distribution over nucleus, few condensed domains
 - → Possible reasons for differences?
 - → Changes in ECM, hypoxia, inflammation

proinflammatory cytokines promote tendon inflammation processes in early tendon repair

24 h of cytokine treatment on healthy young tenocytes

→ Condensation of chromatin and relocalization to periphery as in tendinosis

Chromatin structure in aging and diesease

Cellular reactivity to changes in environment in age and disesae

How well can aged / diseased tenocytes adapt to a change of the environment?
→ Change in stiffness

- → Young helathy tenocytes show drastic changes:
 - dispersion
 - de-compaction
- → Aged tenocytes show same behaviour but less drastic
- → Diseased (tendinosis) tenocytes
 - Did not relocalize
 - No de-condensation at border

→ loss of mechanical sensitivity with degeneration

Conclusions

 Chemical and physical cues in the environment influence the pattern of histone modification and subsequently chromatin organization

In age and disease the adaptation is impaired

• The chromatin organization in aged and diseased cells may be altered due to changes in their microenvironment (oxygen levels, stiffness, inflammation)

Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells

Jianquan Xu,1 Hongqiang Ma,1 Jingyi Jin,1,2 Shikhar Uttam,3 Rao Fu,1,4 Yi Huang,5 and Yang Liu1,6,*

2018

New Results

Chemo-Mechanical Cues Modulate Nano-Scale Chromatin Organization in Healthy and Diseased Connective Tissue Cells

Su-Jin Heo, Shreyasi Thakur, Xingyu Chen, Claudia Loebel, Boao Xia, Rowena McBeath, Jason A. Burdick, Vivek B. Shenoy, Robert L. Mauck, Melike Lakadamyali

doi: https://doi.org/10.1101/2021.04.27.441596

This article is a preprint and has not been certified by peer review [what does this mean?].

2021