

Cell-type specific proteomics in the brain

Technical Journal Club
13.02.2018

- the complexity of the phenotype -
- There is a pool of ~20.000 protein coding genes in human.
- There are epigenetically controlled proteom-phenotypes resulting in cell types and tissues.
- Almost all steps of signal processing and cellular reactions manifest in proteomic changes.
- Proteomic changes can involve the abundance of proteins and protein isoforms, their interactions or their chemical modifications (e.g. phosphorylation).
- In order to understand the phenotype of cells and organisms, looking at their proteome is essential.

- current approaches in proteomics -
- Mass spectrometry of bulk tissues has been used widely.
- Proteomic scale mass spectrometry has developed substantially in the recent years.
- Proteome, Glycoproteome, Interactome, Cell-surface-proteome etc.

- the field of mass spectrometry-

Mallick & Kuster, 2010, Nat. Biotech Steen & Mann, 2004, Nat. Rew.

- the problem of abbundance, representativeness and specificity -

- Analyzing the proteom of the brain in a cell-type specific manner used to be challenging.
- Approaches included:
 - Laser capture microdisseciton
 - FACS sorting

Limited protein yield and throughput. Cell surface marker bias.

• Ex vivo methods: cell culture preparations or rapid isolation of primary cells

- Cell culture is not necessarily representative of the brain.
- Isolation of cells may perturbe the proteome and samples may not be pure enough.

Labeling and identifying celltype-specific proteomes in the mouse brain

Toke P Krogager^{1,3}, Russell J Ernst^{1,3}, Thomas S Elliott^{1,3}, Laura Calo², Václav Beránek¹, Ernesto Ciabatti¹, Maria Grazia Spillantini², Marco Tripodi¹, Michael H Hastings¹ & Jason W Chin¹

February 2018, Nat. Biotechnology

Cell-type-specific metabolic labeling of nascent proteomes *in vivo*

Beatriz Alvarez-Castelao¹, Christoph T Schanzenbächer^{1,2,6}, Cyril Hanus^{1,5,6}, Caspar Glock¹, Susanne tom Dieck¹, Aline R Dörrbaum^{1,2}, Ina Bartnik¹, Belquis Nassim-Assir¹, Elena Ciirdaeva¹, Anke Mueller³, Daniela C Dieterich³, David A Tirrell⁴, Julian D Langer^{1,2} & Erin M Schuman¹

Labeling and identifying celltype-specific proteomes in the mouse brain

Toke P Krogager^{1,3}, Russell J Ernst^{1,3}, Thomas S Elliott^{1,3}, Laura Calo², Václav Beránek¹, Ernesto Ciabatti¹, Maria Grazia Spillantini², Marco Tripodi¹, Michael H Hastings¹ & Jason W Chin¹

SORT – stochastic orthogonal recording of translation AlkK - Nɛ- (propargyloxycarbonyl)-L-lysine ADB - azide diazobenzene biotin

SORT – tagging does not influence signalling

- SCN shows strong circadian oscillations detectable by the Period2::Luciferase system. It
 is a system very sensitive to perturbartions.
- SORT does not alter the the circadian pattern.

In vivo

In vivo

SORT – tagging does not influence protein expression in vivo

Cell (promoter) specific protein tagging

In vivo – mass spectrometry

Cell-type-specific metabolic labeling of nascent proteomes *in vivo*

Beatriz Alvarez-Castelao¹, Christoph T Schanzenbächer^{1,2,6}, Cyril Hanus^{1,5,6}, Caspar Glock¹, Susanne tom Dieck¹, Aline R Dörrbaum^{1,2}, Ina Bartnik¹, Belquis Nassim-Assir¹, Elena Ciirdaeva¹, Anke Mueller³, Daniela C Dieterich³, David A Tirrell⁴, Julian D Langer^{1,2} & Erin M Schuman¹

Cell-type-specific metabolic labeling of nascent proteomes *in vivo*

Beatriz Alvarez-Castelao¹, Christoph T Schanzenbächer^{1,2,6}, Cyril Hanus^{1,5,6}, Caspar Glock¹, Susanne tom Dieck¹, Aline R Dörrbaum^{1,2}, Ina Bartnik¹, Belquis Nassim-Assir¹, Elena Ciirdaeva¹, Anke Mueller³, Daniela C Dieterich³, David A Tirrell⁴, Iulian D Langer^{1,2} & Erin M Schuman¹

Hippocampal cultures. Protein localisation is unaltered.

No major differences in protein expression, protein length and methionine content.

Enrichment of proteins and protein networks in excitatory hippocampal compared to **CTRL** neurons

Effects of enriched environment on the proteome.

Summary

Both methods allow us to do targeted, cell-typre specific proteomics in the brain.

SORT

- Viral transduction
- Flexible in terms of disease models. May require complex breeding.
- Variability due to injections and infection rate.
- Easier to generate desired vectors.
 Limited to the available mice.

FUNCAT/BONCAT

- Genetic labeling
- Less inherent variability.

Shortcomings of both methods

- Samples are pooled from multiple mice.
- Both studies yield ~2000 proteins whereas the proteom contains more than that (~12.000/cell).
- The stoichiometry of labeling is not established.
 - How does variable AA intake influence ncAA incorporation and proteom labeling?
 - Optimum between labeling and proteom malfunction?

Thank you for your attention!