Super-resolution microscopy:

nanoscale structure of *amyloid*-β *plaques* and *synaptic alteration* in Alzheimer's disease

Journal Club 16th November 2021 Chiara Trevisan

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN Nanoscale structure of amyloid-β plaques in Alzheimer's disease

Marta Querol-Vilaseca^{1,2}, Martí Colom-Cadena^{1,2}, Jordi Pequeroles^{1,2}, Raúl Nuñez-

Llaves^{1,2}, Joan Luque-Cabecerans^{1,2}, Laia Muñoz-Llahuna^{1,2}, Jordi Andilla³, Olivia Belbin^{1,2}, Tara L. Spires-Jones 5, Ellen Gelpi 4,6, Jordi Clarimon 2,2, Pablo Loza-Alvarez Juan Fortea 1,2

& Alberto Lleó 1,2

Received: 28 November 2018 Accepted: 8 March 2019

iScience

Article

Alteration in synaptic nanoscale organization dictates amyloidogenic processing in Alzheimer's disease

Shekhar Kedia, 1 Pratyush Ramakrishna, 2 Pallavi Rao Netrakanti, 1 Nivedita Singh, 1 Sangram S. Sisodia, 3 Mini Jose, ¹ Sathish Kumar, ⁴ Anita Mahadevan, ⁵ Narendrakumar Ramanan, ¹ Suhita Nadkarni, ² and Deepak Nair^{1,6,*}

Published: 2019

Published: 2021

a SRM techniques SIM Increases spatial resolution using a series of regularly spaced illumination patterns

b Actin in COS7 cells

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN

Nanoscale structure of amyloid-\beta plaques in Alzheimer's disease

Marta Querol-Vilaseca^{1,2}, Martí Colom-Cadena^{1,2}, Jordi Pegueroles^{1,2}, Raúl Nuñez-Llaves^{1,2}, Joan Luque-Cabecerans^{1,2}, Laia Muñoz-Llahuna^{1,2}, Jordi Andilla³, Olivia Belbin^{1,2}, Tara L. Spires-Jones ⁵, Ellen Gelpi ^{4,6}, Jordi Clarimon^{1,2}, Pablo Loza-Alvarez³, Juan Fortea^{1,2} & Alberto Lleó ^{1,2}

Received: 28 November 2018

Accepted: 8 March 2019

AIM:

- Propose a new tool to study the nanometric neuropathology of neurodegenerative diseases by combining ultrathin sections used in <u>Array Tomography</u> scanned with <u>super-resolution STED microscopy</u>.
- Investigate the nanoscale architecture of non-fibrillar Aβ structures in human amyloid plaques.
- Investigated the load and size of these non-fbrillar Aβ entities in post-mortem human brain tissue in autosomal dominant pattern (ADAD) and early-onset sporadic Alzheimer's diseade (eoSAD) patients.

Amyloid origin and the mechanism of the amyloid formation

Improving spatial and axial resolution with Array Tomography (AT) and Stimulated Emission Depletion (STED)

The combination of AT and STED allows the identification of smaller non-fibrillar Aß structures

Antibodies:

- Anti-Neurofilaments
- Anti-NAB61

Aβ structure's size:

Large >0,015 μm³

Medium >0,006<0,015 μm³

Small <0,006 μm³

Scale bar:

10 μm

Inset (C-F) 1 μm

AT-STED application: higher levels of non-fibrillar Aβ structures an ADAD than in SAD

AT-STED application: higher levels of **non-fibrillar Aβ structures** an ADAD than in SAD

CONCLUSION

- This study shows that the combination of AT and STED can be successfully applied to investigate <u>non-fbrillar Aβ</u> structures in AD human brain.
- The obtained nanoscale architecture of human amyloid plaques reveals a dense core with a peripheral halo
- This study provides evidence of higher levels of non-fbrillar $A\beta$ species in ADAD compared to SAD

This new tool opens an important door for the neuropathology field allowing the characterization of aggregates or structures at a nanometric scale as potential therapeutic targets

iScience

Article

Alteration in synaptic nanoscale organization dictates amyloidogenic processing in Alzheimer's disease

Shekhar Kedia,¹ Pratyush Ramakrishna,² Pallavi Rao Netrakanti,¹ Nivedita Singh,¹ Sangram S. Sisodia,³ Mini Jose,¹ Sathish Kumar,⁴ Anita Mahadevan,⁵ Narendrakumar Ramanan,¹ Suhita Nadkarni,² and Deepak Nair^{1,6,*}

AIM

- Use of **super-resolution imaging** and analysis to reveal the subsynaptic organization of APP, β and γ -secretases
- Understanding of the association of <u>APP with β-secretases</u> in specialized subsynaptic regions and how this association directly influences the processing of APP through the amyloidogenic pathway.
- Use of transgenic mouse models for AD and postmortem human brain tissues from AD patients, to validate the competency of this molecular model

Dynamic of the healthy synapse

Insight into nanodomains

Reconstruction of nanoscale distribution of APP on the dendritic shaft of pyramidal neuron

Nanoorganization of amyloidogenic proteolytic machinery in the functional domains of an excitatory synapse

Endocytic Zone / β-Secretase

Postsynaptic Density / y-Secretase

Endocytic Zone / γ-Secretase

Nanoscale alteration of molecular fingerprints of amyloidogenic machinery in multiple models of AD

- The length and intensity of nanodomain β/PSD and nanodomain β/EZ were significantly altered between WT and Tg mice

The cumulative β -secretase levels were decreased in PSD, while it increased in EZ in Tg mice

- The proximity of β -secretase to PSD and EZ were altered antagonistically. The <u>distance of β -secretase to PSD increased</u>, ynapse while a significant decrease was observed for EZ in Tg mice

Taken together, the β -secretase levels in Tg mice were augmented significantly in EZ, both inside and outside of nanodomains, along with a decrease in the length of nanodomains.

Nanodomains intensity (a.u.)

Control

AD

Control

AD

The cumulative APP and β -Secretase levels were found to be <u>increased in EZ</u> in AD, compared to PSD

APP levels were augmented in PSD while β-Secretase levels decreased in PSD in AD

The distance of APP and β-Secretase did not differ significantly in the PSD, while at EZ it was reduced for β-Secretase and augmented for APP

These observations in humans reinforce the observations in Tg mice, $\frac{y / \beta$ -Secretase **Postsynaptic D**

CONCLUSION

- The different models used to evaluate the <u>nanoscale organization of β-amyloidogenic machinery</u> converge to provide evidence that the compositionality of this machinery <u>is altered at synapses</u>, and is a critical determinant in deciding the shift in equilibrium toward β -amyloidogenic pathway.
- The authors show an <u>increase in the content of β-secretase and APP in nanodomains</u>. This support our hypothesis that the availability of β-secretase and APP in nanodomains of subsynaptic compartments can be a limiting or a contributing factor for b β-amyloidogenic processing of APP.
- In this study was described a holistic approach for the systematic investigation of AD as a synaptopathy.

 This approach uncovers a fundamental nanomachinery, where alteration in real-time molecular interactions in the scale of milliseconds to minutes can contribute toward long-term deficits such as those seen in AD.

Thanks for your attention