Recent developments in CAR-T cell therapy

Technical journal club 18.12.2018

Anna Henzi

Recent case report...

medicine

Brief Communication | Published: 01 October 2018

Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell

Marco Ruella, Jun Xu, [...] J. Joseph Melenhorst ™

Nature Medicine 24, 1499-1503 (2018) Download Citation ±

Recent case report...

- 20y old patient with B-ALL
- Relapse 9 months after CD19 targeted CAR T cell infusion
- CD19- leukemia with aberrant expression of anti-CD19 CAR

CAR-T cell therapy

• CAR = chimeric antigen receptor

- Antigen-binding region (scFv)
- T-cell receptor transmembrane domain
- Intracellular signaling: CD3ζ chain First generation

Tisangenlecleucel (Kymriah)

CD19 CAR T cell products for treatment of B cell malignancies

 Autologous lymphocytes

Back to the case report...

- Introduction of CAR gene into a single leukemic B cell during T cell manufacturing
- CAR binds to CD19 epitope > masking > resistance

Published in final edited form as:

Nat Nanotechnol. 2017 August; 12(8): 813-820. doi:10.1038/nnano.2017.57.

In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers

Tyrel T. Smith^{1,†}, Sirkka B. Stephan^{1,†}, Howell F. Moffett^{1,†}, Laura E. McKnight¹, Weihang Ji¹, Diana Reiman², Emmy Bonagofski², Martin E. Wohlfahrt¹, Smitha P. S. Pillai³, and Matthias T. Stephan^{1,2,4,5,*}

In situ programming of leukaemia-specific T cells using synthethic DNA nanocarriers

Problem: complex procedures to produce genetically modified lymphocytes

Solution: nanotechnology to make inexpensive DNA carriers > program T cells *in* patient

- inexpensive, quick, specific
- Sufficient quantities for anti-tumor activity

Delivery into nucleus

Uptake by T cells

Nanocarrier

Nanocarrier

Anti-cancer capability

Nanocarrier

Anti cancer capability

Nanocarrier

Targeting T cells in vitro

- Lentivirally-transduced T cells targeting Eμ-ALL01 leukemia cells
- Nanoparticle-transfected T cells targeting Eμ-ALL01 leukemia cells
- Lentivirally-transduced T cells targeting B16F10 melanoma cells
- Nanoparticle-transfected T cells targeting B16F10 melanoma cells

Targeting T cells in vitro

Targeting T cells in vivo

How exclusively is the targeting of T cells?

Targeting T cells in vivo

Distribution

Toxicity of nanocarriers?

 Loaded with anti-P4-1BBz gene > human prostate specific membrane antigen

Reprogramming of T cells

- Mouse leukaemia model
- Persistent CAR expression in actively dividing T cells

Reprogramming of T cells

- Antigen required for proliferation
- Memory phenotype

Leukaemia specific CAR genes (194-1BBz CAR)

Controls: P4-1BBz CAR, no transposase

- Luciferase expressing leukaemia cells (Eμ-ALL01)
- Immunocompetent albino mice

- Luciferase expressing leukaemia cells (Eμ-ALL01)
- Immunocompetet albino mice

- Luciferase expressing leukaemia cells (Eμ-ALL01)
- Immunocompetet albino mice

- Luciferase expressing leukaemia cells (Eμ-ALL01)
- Immunocompetet albino mice

- Luciferase expressing leukaemia cells (Eμ-ALL01)
- Immunocompetet albino mice

Conclusions

- Nanoparticles carrying genes of CD19 specific CARs can selectively and quickly edit T-cell specificity in vivo
- Comparable efficacy to conventional adoptive transfer
- Safety: off-target gene transfer!
- Nanoparticles: easy to manufacture, stable, good long term storage, cheaper

Volume 173, Issue 6, 31 May 2018, Pages 1426-1438.e11

Article

Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses

Jang Hwan Cho 1, 2, James J. Collins 3, 4, 5, 6, 7, 8, Wilson W. Wong 1, 2, 9 △ ☑

Show more

https://doi.org/10.1016/j.cell.2018.03.038

Get rights and content

Increasing T cell versatility

«feature-rich» T cells

Two-component, split CAR system

zipCAR

zipFv

SUPRA CAR

(split, universal, programmable)

Design

Conventional CAR

SUPRA CAR

scFv

zipFv

In vivo experiment

- Control tumor growth in mouse xenograft tumor models:
 - Nod/scid/y^{-/-} (NSG) mice
 - Breast cancer cells (i.p.) (SK-BR-3)
- 2 weeks of tumor establishment
- Conventional Her2 CAR vs. RR zipCAR
- Anti-Her2-EE zipFv injected every 2 days for 2 weeks
- In vivo imaging of luciferase signal from breast cancer cells

In vivo experiments

Tumor only

Multiple targets for one CAR

• Problem: antigen specificity not flexible

Solutions: split CAR

Multiple targets for one CAR

Multiple targets for one CAR

CD8+

Controlling SUPRA CAR activity

- Adverse event: cytokine release syndrome
- CAR T cell activity cannot be prevented, cytokine release cannot be controlled

- Solutions:
 - Amount
 - affinity
 - competition

Fine-tuning of SUPRA-CARs

Fine-tuning of SUPRA-CARs

100

Fine-tuning of SUPRA-CARs

Competitive zipFvs

Competitive zipFvs

Competitive zipFvs

		Time competitive zipFv added after addition of a-Her2-EE zipFv (min)					0000	
		<1	15	45	60	120	٥	3000
	no zipFv						ĺ	
	EE only							
Strong (SYN 4)	A:I=1:4						FN-y (pg/ml)	
	A:I=1:2						g/	
	A:I=1:1						9	
Medium (SYN 47)	A:I=1:4						>	
	A:I=1:2						ż	
	A:I=1:1						4	
Weak (SYN 13)	A:I=1:4							
	A:I=1:2							
	A:I=1:1							0
								•

In vivo?

- SK-BR-3 breast cancer model
- Tumor establishment > RR-zipCAR expressing CD8+
 T cells + anti-Her2-EE zipFv

Effect on anti-tumor activity?

Fast enough in patients?

SYN4 = competitive SYN13 = control

• Problem: antigen escape

- Solutions:
 - New zipFv
 - «OR» operation

KILLING

α-Her2

OR Logic

Axi

T CELL zipFv TARGET α

- Problem: Identification of single tumor specific antigen
- Example: can we target Her2 cells and spare cells that express both Her2 and Axl?

- Problem: Identification of single tumor specific antigen
- Example: can we target Her2 cells and spare cells that express both Her2 and Axl?

Cells *pretreated* with anti-Axl zipFv

Affinity: prevention of cytotoxicity only with high affinity zipFv

In vivo?

Independent control of signaling domains

 Orthogonal SUPRA CARs can control distinct signaling pathways in same cell

Independent control of signaling domains

 Orthogonal SUPRA CARs can control distinct signaling pathways in same cell

Independent control of signaling domains

 Orthogonal SUPRA CARs can control distinct signaling pathways in same cell

150

α-Her2 zipFv [nM]

Advantages - Limitations

- Platform with improved precision, tunability and controllability
- As good as conventional CAR-T cells but not better
- Simple change of target
- Combinatorial logic
- Flexible but additional parts
- Modulation in patient? How precise? How fast?
- Short serum half live of zipFv temporal control vs.
 Loss of acvitity

Recent developments in CAR T cell therapy - summary

- More patients, more malignancies
 - Engineering solutions for adjustable and robust control of cellular function
 - Less complex, cheaper solutions

Thank you!

.... and Merry Christmas ©

https://webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision.med.utah.edu/2012/12/merry-christmas-from-peter-westenskow-and-the-friedlander-laboratory/webvision-peter-webvision-peter-westenskow-and-the-friedlander-laboratory/webvision-peter-webvision-peter-westenskow-and-the-friedlander-webvision-peter-westenskow-and-the-friedlander-webvision-peter-webv