METHODS FOR SINGLE CELL RNA_{SEQ}

Introduction

"RNA sequencing (RNA-seq) is the application of any of a variety of next-generation sequencing techniques (also known as deep sequencing because of their potential for high coverage) to study RNA."

(Chu et al. Nucleic Acid Ther. 2012 Aug; 22(4): 271-274)

- High-throughput sequencing and RNA-seq used extensively to profile bulk tissues
- Growing demand for whole transcriptome analysis of single cells
- Direct analysis of:
 - Rare cells types
 - Primary cells
 - Desire to profile interesting subpopulations from larger heterogeneous populations

1st article

Quantitative assessment of single-cell RNA-sequencing methods

NATURE METHODS | VOL.11 NO.1 | JANUARY 2014 | 41

Angela R Wu¹, Norma F Neff¹, Tomer Kalisky^{1,8}, Piero Dalerba²⁻⁴, Barbara Treutlein¹, Michael E Rothenberg⁵, Francis M Mburu^{1,6}, Gary L Mantalas¹, Sopheak Sim³, Michael F Clarke²⁻⁴ & Stephen R Quake^{1,6,7}

Aim

They wanted to investigate RNAseq for single cells for its:

- Throughput
- Quantitative vs. qualitative value

They tried to asses:

- Sensitivity
- Precision

Preparation of samples

Sample: cultured **HCT116 cells**

Kits used

Method	cDNA synthesis	Library construction	# Samples
Bulk RNA	Magnetic bead-based oligo dT priming extraction of mRNA from cell ysates, followed by Superscript II cDNA synthesis	Nextera – tagmentation using transposase enzymes	1) n = 2
	2) SMARTer Ultra Low RNA kit – pligo dT priming		2) n = 2
Clontech SMARTer	SMARTer Ultra Low RNA Kit – oligo dT priming	Nextera	n = 3
Sigma TransPlex	Sigma-Aldrich TransPlex WTA kit – random priming for both first and second strand synthesis, with a universal 5' priming sequence for subsequent PCR amplification.	Nextera	n = 3

Results - Reproducibility/Sensitivity

- Reproducibility, as evaluated by the percentage of genes detected in pairs of replicate samples out of the mean total number of genes detected in this pair of samples.
- Sensitivity, as evaluated by overlap between genes detected by single-cell and bulk RNA-seq measurement.

Results – Correlation

- qPCR GoldStandard
- Good correlation between RNA-seq and qPCR for all single-cell preparations

Results – Comparison of gene expression distribution

Single-cell qPCR

Single-cell RNA-seq

Results

In general, the microfluidic single-cell data had a more well-defined relationship, with less scatter, between expression level and variation than the single cells measured in tubes.

Summary

- RNA-seq results quantitatively comparable to qPCR
 - Especially when prepared in a nanoliter scale
 - reduced bias and improved correlation

2nd article

RESEARCH ARTICLE

EXPRESSION PROFILING

Combinatorial labeling of single cells for gene expression cytometry

H. Christina Fan, Glenn K. Fu, Stephen P. A. Fodor*

SCIENCE sciencemag.org

6 FEBRUARY 2015 • VOL 347 ISSUE 6222

Just a few words about the last author...

Stephen P. A. Fodor:

- Co-founder of Affymetrix
- Developed microarray technology
- Founder & CEO of Cellular Research Inc. (since 2011)

Introduction - Aim

- To have a inexpensive system with no need for highly elaborated instrumentation
- Scalable approach
- Profiling of thousands of single cells across an arbitrary number of genes

"This technology, which we term **CytoSeq**, enables the equivalent of **protein flow cytometry for gene expression.**"

Introduction - Principle

Results – identifying cell types in cell mixtures

- Principal component analysis
- First component puts genes into two clusters, corresponding either to Ramos or K562 cells
- □ 2nd component → HBG1 variability

Results – B cells / Ramos cells

- A panel of 111 genes known for B cell function was analyzed
- □ Small number of Ramos spiked into B cells
- □ 18 cells transcriptionally more active

Results – Correlation with a bulk sample

Results – Major cell type analysis via CytoSeq

Results – T cell subsets after stimulation

unstimulated

Stimulated with CD3/CD28 – Abs for 6 hours

Results – Identification of rare antigen specific T cells

Summary

- Identification and counting of transcript molecules in a sample from a single cell in thousands
- Identification of expression profiles of single cells in a heterogeneous population
- Detection of rare cells in large background
- No expensive instrumentation needed, scalable
- Extension of Mass-Spec and FACS
- Could be used for circulating tumor analysis, immune disorder, infectious diseases, etc...

Ē