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Drug discovery and high-throughput screening 

Compound stores Robots 

Automation 



Drug discovery and high-throughput screening 

Motivation for in silico drug discovery:  

R 

Known effective compound: HTS strategy to optimize efficacy: 

1. Select ~10 functional groups 

2. Place their combination at 4 positions 

3. Screen 10000 combination 

Instead of trial and error – use computer to help 

Time and $ 

R 

1. Synthesize a small number of modified formulas (x10 than descriptors) 

2. Measure various descriptors (properties of the molecules) 

3. Assess biological activity 

4. Find mathematical correlation between descriptors values and 

biological effect 

5.  Predict properties of the rest formulas 

6. Synthesize and screen the molecules with desired predicted 

properties for biological activity 



in silico drug discovery approach  

Aim: Mathematical relationship between the structure and the biological effect 

Quantitative structure–activity relationships (QSAR)  

Technique in the pharmaceutical industry for predicting on-target and off-target activities 

First application was in 1969 

C. Hansch 

Equation to calculate the biological activity: minimum effective dose 

 

log (1/C)=k1logP-k2(logP)2+k3σ+k4 

 

C = minimum effective dose 

P = octanol-water partition coefficient 

σ= Hammett substituent constant (reaction rates of specific group, dependent on the Gibbs free energy) 

kx = constants derived from regression analysis (statistical process estimating relationship among variables) 

log (1/C)=k1logP-k2(logP)2+k3σ+k4 

Example: 

Binding of drug to serum albumin. It can be determined by their hydrophobicity, in study of 40 

compounds they resulted in the following equation: 

log (1/C) = 0.75log P + 2.30 
B, Jhanwar, Pharmacologyonline 1: 306-344 (2011)  



Quantitative structure–activity relationships (QSAR)  

Descriptors (translate the value of the parameter in to numbers) 

Parameters that explain properties in a group of related compounds. 

 

Constitutional:  

MW, number of H, functional groups, etc. 

 

Quantum descriptors:  

atomic charge, orbital densities, etc. 

 

Geometrical:  

volume, shape, surface area 

 

Electrostatic:  

dipole moment, polarizability 

 

Experimental descriptors:  

Come from empirical observations and can not be calcualted in advance. For 

example set of molecules (aminoacids) interacting with binding site. Can be 

delivered by site directed mutagenesis. 



Quantitative structure–activity relationships (QSAR)  

The molecule is decomposed into a set of fragments—each centered at a non-hydrogen 

atom—where each fragment extends radially along bonds to neighboring atoms.  

Each fragment is assigned a unique identifier, and the collection of identifiers for a 

molecule is hashed into a fixed-length bit vector to construct the molecular “fingerprint”. 

ECFP4 and other fingerprints are commonly used in cheminformatics applications, 

especially to measure similarity between compounds 

Extended-Connectivity Fingerprints 

David Rogers, 2010 

Extended-Connectivity Fingerprints 

Descriptors 



Quantitative structure–activity relationships (QSAR)  

Atom Pairs and Donor-Aceptor Pairs 

Descriptors 

(atom 1 description)-( separation)-( atom 2 description)  

Atom Pairs 

1 = cations, 2 = anions, 3 = neutral 

hydrogen bond donors, 4 = neutral 

hydrogen bond acceptors, 5 = polar atoms 

(both donor and acceptor, e.g., hydroxy 

oxygen), 6 = hydrophobic atoms, 7 = other 

Donor-Aceptor Pairs 
Add-on to AP, that describes the atom 

Chemical Similarity Using Physiochemical Property Descriptors, 

Simon K. Kearsley, January 24, 1996 



Quantitative structure–activity relationships (QSAR)  

Quantitative (mathematical) relationship between structure and observed activity 

Find correlation coefficients between observed activity and the descriptors 

 

Curve fit – find an equation 

No understanding of chemistry or mechanism is required!  

Input  

(descriptor) 

Something 

is 

happening 

Measurable output  

(biological activity) 

Statistical correlation 



Modeling 

Quantitative structure–activity relationships (QSAR)  

At present time there is a data across different molecules, different pathologies, 

different pathways and different biological effects 

 

How one can teach the computer to classify the data and make the model? 

Two major modeling system in QSAR: 

 

1. Random Forest 

2. Neural Networks 



Decision tree 

Modeling in QSAR  

© Victor Lavrenko 

Biological effect Experimental descriptors 
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Decision tree 

Modeling in QSAR  
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Decision tree 

Modeling in QSAR  
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Pure subsets of descriptors 

Decision tree 

Modeling in QSAR  
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Decision tree 

Modeling in QSAR  



Data 

(value) 

Feature (descriptor) 

Color = effect 

Decision tree 

Modeling in QSAR  



Many descriptors 

Many values 

Many effects 

Matrix S = 

 A0 B0 C0 D0 E0 F0 

A1 B1 C1 D1 E1 F1 

A2 B2 C2 D2 E2 F2 

descriptors 

values 

We need a learning method to find correlations: classification of the descriptors 

Decision tree 

Modeling in QSAR  



Random Forest (of decision trees) 

S = 

 A0 B0 C0 D0 E0 F0 

A1 B1 C1 D1 E1 F1 

A2 B2 C2 D2 E2 F2 

From the matrix create many random subsets 

S1 = 

 A3 B8 C1 D9 E1 F0 

A8 B5 C9 D7 E4 F1 

A2 B2 C2 D2 E2 F2 

S2 = 

 A9 B4 C2 D1 E9 F6 

A8 B5 C9 D7 E4 F1 

A2 B2 C2 D2 E2 F2 

… 

Modeling in QSAR  



From the matrix create many random subsets 

And for each of them make a decision tree 

Ask each tree in the forest for prediction of 

the biological effect. 

 

Vote for the most frequent one  

Random Forest (of decision trees) 

Modeling in QSAR  



Random Forest (of decision trees) 

Modeling in QSAR  

Example of application 

The human ether-a-go-go related gene (hERG) channel is a cardiac ion channel that is 

involved in regulation of cardiac action potential. 

 

Blockage of this potassium channel extends the repolarization phase, leading to a 

prolonged QT interval. 

Genetics of acquired long QT syndrome 

Dan M. Roden, 

CJ Clin Invest. 2005;115(8):2025-2032. 

Therefore, the hERG channel is a general anti-target 



Random Forest (of decision trees) 

Modeling in QSAR  

Example of application 

The Predictive QSAR Model for hERG Inhibitors Using Bayesian 

and Random Forest Classification Method, Jun Hyoung Kim, 

Bull. Korean Chem. Soc. 2011, Vol. 32, No. 4 1237 

in vitro hERG inhibition data were collected 

from the literature, Prous Science 

Integrity,19 and an inhouse experiment 

Dataset: 280 compounds 

whole-cell patch-clamp, experimental IC50 

or pIC50 (−log IC50) values 

Data (biological effect): 

IC50 ≥ 10 μM or pIC50(−logIC50) ≤ 5 were 

assigned to class 0 (weak inhibitors) 

 

the others were assigned to class 1 (strong 

inhibitors) 

Descriptor: 

Extended-Connectivity Fingerprints 

(ECFP4) 

Variable % training set and test set 



Random Forest (of decision trees) 

Modeling in QSAR  

The Predictive QSAR Model for hERG Inhibitors Using Bayesian and 

Random Forest Classification Method, Jun Hyoung Kim, Bull. Korean Chem. 

Soc. 2011, Vol. 32, No. 4 1237 

Test of the model AUC = area under the curve (integral) of receiver 

operating characteristic. 

 

The AUC provides a simple quality assessment for 

a classification model. The closer the AUC score is 

to 1.0, the better the model is at distinguishing 

samples in one of the classes 

To identify the important features that 

contributed to class 0 or class 1, the 

ECFP4 descriptors were extracted from 

each learned model of which the 

normalized probability values are less 

than −0.70 (class 0) or more than 0.35 

(class 1). The normalized probability is 

the final contribution of the descriptor 

value to the total relative estimate. 

Identifying the important descriptor value  
class 0 

class 1 



Neural Networks 

Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships, 

Junshui Ma 

Input: 

 

 

As many as descriptors and value X of each 

Activation function: 

Default bias: 

effect 

Modeling in QSAR  



Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships, 

Junshui Ma 

Activation function (from biology of 

neurons) 

(This is what we need for learning) 

Synaptic weight 

No saturation 

regime 

Red – derivative of the function 

Objective function – result of learning 

Neural Networks 

Modeling in QSAR  



Deep Neural Networks 

Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships, 

Junshui Ma 

Input layer, 

Enter of descriptor 

Output layer, 

Generated prediction 

Deep layers of neurons 

Modeling in QSAR  



Quantitative structure–activity relationships (QSAR)  

Deep Neural Networks 

Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships, 

Junshui Ma 

For the QSAR there should be multiple 

output neurons, each of them gives specific 

objecive function. 

This is called multitask DNN. 

Number of tasks = number of objective functions 

Why multitasking? 

Different compounds might share several 

features. Even if data on compounds 

(compound classes) is poorly related, they 

are still governed by the laws of chemistry 

and it might still be important to learn more 

broadly useful higher-level features from 

the initial descriptors. 

(example see previous paper: compound 

efficacy on one pathway and low inhibition). 



Quantitative structure–activity relationships (QSAR)  

Deep Neural Networks 

Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships, 

Junshui Ma 

For the QSAR there should be multiple 

output neurons, each of them gives specific 

objecive function. 

This is called multitask DNN. 

Number of tasks = number of objective functions 



Quantitative structure–activity relationships (QSAR)  

Deep Neural Networks 

Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships, 

Junshui Ma 

Training procedure: 

Backward propagation 

The objective function can have several 

millions of individual values (coef.). 

This is dangerous for over fitting. 

So initially the DNN is trained unsupervised 

with the set of compounds descriptors, 

without specifying their effect.   



Quantitative structure–activity relationships (QSAR)  

Deep Neural Networks 

Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships, 

Junshui Ma 

The large list of compounds is randomly 

split into sets and the DNN is trained on 

this sets. By the end of training the 

objective function is adjusted. 

 

A learning of a all sets is an “Epoch”. 

 

It is needed to have many epochs to train 

the DNN. 

Training procedure: 

Backward propagation 



Massively Multitask Networks for Drug Discovery 

Data: 
259 datasets gathered from publicly available data 

contained 37.8M experimental data points for 1.6M compounds 



Massively Multitask Networks for Drug Discovery 

The PubChem BioAssay database currently contains 500,000 descriptions of 

assay protocols, covering 5000 protein targets, 30,000 gene targets and 

providing over 130 million bioactivity outcomes. PubChem's bioassay data are 

integrated into the NCBI Entrez information retrieval system, thus making 

PubChem data searchable and accessible by Entrez queries. 



Massively Multitask Networks for Drug Discovery 

The DUD-E group contained 102 datasets that were designed for the 

evaluation of methods to predict interactions between proteins and small 

molecules 



Massively Multitask Networks for Drug Discovery 

The MUV group contained 17 challenging datasets specifically 

designed to avoid common pitfalls in virtual screening 



Massively Multitask Networks for Drug Discovery 

estrogen receptor alpha, LBD (ER, LBD) 

estrogen receptor alpha, full (ER, full) 

aromatase 

aryl hydrocarbon receptor (AhR) 

androgen receptor, full (AR, full) 

androgen receptor, LBD (AR, LBD) 

peroxisome proliferator-activated receptor gamma (PPAR-gamma) 

nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (Nrf2/ARE) 

heat shock factor response element (HSE) 

ATAD5 

mitochondrial membrane potential (MMP) 

p53 



data set type description number of molecules number of unique descriptors 

Training data set (ADME=absorption, distribution, metabolism, and excretion activities) 

3A4 ADME CYP P450 3A4 inhibition –log(IC50) M 50000 9491 

CB1 target binding to cannabinoid receptor 1 –log(IC50) M 11640 5877 

DPP4 target inhibition of dipeptidyl peptidase 4 –log(IC50) M 8327 5203 

HIVINT target inhibition of HIV integrase in a cell based assay –log(IC50) M 2421 4306 

HIVPROT target inhibition of HIV protease –log(IC50) M 4311 6274 

LOGD ADME logD measured by HPLC method 50000 8921 

METAB ADME percent remaining after 30 min microsomal incubation 2092 4595 

NK1 target inhibition of neurokinin1 (substance P) receptor binding –log(IC50) M 13482 5803 

OX1 target inhibition of orexin 1 receptor –log(Ki) M 7135 4730 

OX2 target inhibition of orexin 2 receptor –log(Ki) M 14875 5790 

PGP ADME transport by p-glycoprotein log(BA/AB) 8603 5135 

PPB ADME human plasma protein binding log(bound/unbound) 11622 5470 

RAT_F ADME log(rat bioavailability) at 2 mg/kg 7821 5698 

TDI ADME time dependent 3A4 inhibitions log(IC50 without NADPH/IC50 with NADPH) 5559 5945 

THROMBIN target human thrombin inhibition –log(IC50) M 6924 5552 

Validation Data Sets 

2C8 ADME CYP P450 2C8 inhibition –log(IC50) M 29958 8217 

2C9 ADME CYP P450 2C9 inhibition –log(IC50) M 189670 11730 

2D6 ADME CYP P450 2D6 inhibition –log(IC50) M 50000 9729 

A-II target binding to Angiotensin-II receptor –log(IC50) M 2763 5242 

BACE target inhibition of beta-secretase –log(IC50) M 17469 6200 

CAV ADME inhibition of Cav1.2 ion channel 50000 8959 

CLINT ADME clearance by human microsome log(clearance) μL/min·mg 23292 6782 

ERK2 target inhibition of ERK2 kinase –log(IC50) M 12843 6596 

FACTORXIA target inhibition of factor Xla –log(IC50) M 9536 6136 

FASSIF ADME solubility in simulated gut conditions log(solubility) mol/L 89531 9541 

HERG ADME inhibition of hERG channel –log(IC50) M 50000 9388 

HERG (full 

data set) 

ADME inhibition of hERG ion channel –log(IC50) M 318795 12508 

NAV ADME inhibition of Nav1.5 ion channel –log(IC50) M 50000 8302 

PAPP ADME apparent passive permeability in PK1 cells log(permeability) cm/s 30938 7713 

PXR ADME induction of 3A4 by pregnane X receptor; percentage relative to rifampicin 50000 9282 



Massively Multitask Networks for Drug Discovery 

The DNN 

Variable, up to 259 



Metrics: 

 

The metric to evaluate prediction performance is R2, which is the squared Pearson 

correlation coefficient between predicted and observed activities in the test set 

 

AUC The closer the AUC score is to 1.0, the better the model is at distinguishing 

samples in one of the classes 

Massively Multitask Networks for Drug Discovery 



What were they aiming in their research: 

Massively Multitask Networks for Drug Discovery 

1. Do massively multitask networks 

provide a performance boost over 

simple machine learning methods? 

2. How does the performance of a 

multitask network depend on the 

number of tasks? What are the crucial 

parameters? 

3. Do massively multitask networks 

extract generalizable information about 

chemical space?  

4. When do datasets benefit from 

multitask training?  



Massively Multitask Networks for Drug Discovery 

1. Model performance. Compare Metrics of Random Forest (and other less popular models) 

and DNN 

Paper 1 (newest) 
Paper 2 

Both papers report significant improvement of the Metrics in DNN 



Massively Multitask Networks for Drug Discovery 

2. Model performance. Crucial parameters 

Activation function 

Number of tasks 



Massively Multitask Networks for Drug Discovery 

3. Is the data generalizable 

This plot represents the efficiency of the features of the resulting objective function to the 

dataset excluded from training in single task NN. 



Massively Multitask Networks for Drug Discovery 

4. “Cross-talk” between databases more visible in multitask DNN 

DUD-E group contained 102 datasets that were designed for the evaluation of methods to predict interactions between 

proteins and small molecules 

MUV group contained 17 challenging datasets specifically designed to avoid common pitfalls in virtual 

screening 

PBCA The PubChem BioAssay database currently contains 500,000 descriptions of assay protocols, covering 5000 protein 

targets, 30,000 gene targets and providing over 130 million bioactivity outcomes. PubChem's bioassay data are integrated into 

the NCBI Entrez information retrieval system, thus making PubChem data searchable and accessible by Entrez queries. 

Active compounds are better distinguished from not-active 



Massively Multitask Networks for Drug Discovery 

Deep Neural Networks 

DNNs have proven efficacy and already implemented in our daily life, ask Siri or 

OK, Google (natural language processing) about face recognition and movement 

recognition (Kinect) 

Currently DNNs are in the development stage for the QSAR. 

Their use will allow to screen the novel drugs for efficacy and toxicity across the 

complete knowledge base. 

 

The hardware (i.e., a computer with graphic processing unit capability) used in this 

study costs about USD $4,000, and the supporting software is free. 



OK GOOGLE 

Find new drugs! 


