Technical Journal Club 04.11.2014

Engineered
Riboswitches and
their applications

Riboswitches

- Regulatory element of a mRNA, located in the UTR
- Bind a specific small molecule:
 - *coenzymes
 - *nucleobases or derivatives
 - *amino acid
 - *small molecules, vitamins, ions
- Induce a conformation change
- Regulate gene expression in cis
- Requirement: *molecular recognition
 - *conformational switching
- >Ancient sensory and regulatory system

Riboswitch mediated gene control

Transcription termination

Translation initiation

Splicing eukarya

Self-cleaving

Exemples of Riboswitch

Engineering Riboswitch

- >Chemical simplicity: only 4 ribonucleotides
- >Structural flexibility and modularity:
- Secondary and tertiary structure
- Easy design
- >Predictable structure-function relationship
- >Can be used for monitoring and programing cell behavior

Reprogramming Cellular Behavior with RNA Controllers Responsive to Endogenous Proteins

Stephanie J. Culler, 1 Kevin G. Hoff, 1 Christina D. Smolke 1,2*

• <u>Aim:</u>

Non-invasive sensing of disease markers and reprogramming cellular fate by pre-mRNA splicing regulation

- Requirements:
- 1) inputs/outputs functionalities
- 2) Regulatory properties: able to control the cellular behavior
- 3) Sensitive to endogenous protein concentration or localization changes

Approach:

>Couple an increase of protein abundancy with a targeted gene expression through regulation of alternative splicing

- >RNA devices detect signaling through NFkB and Wnt pathways
- *Rewire these pathways
- *Create new behaviors

Strategy

Protein-specific effect on Splicing using MS2 protein

SMN1 gene

- * Aptamers of MS2 inserted in introns
- *Transfection of MS2+DS-red plasmid
- >GFP increase specific to WT aptamer
- >Correlation fluorescence, gene expression and splicing pattern
- >Position 3,6,10

Nuclear detection of NFkB pathway activation

*RNA aptamer binding p50 or p65 subunit in position 3

*TNF stimulation of transfected HEK293

>GFP increase specific to WT aptamer

>Correlation fluorescence, gene expression and splicing pattern >p50 device reduce GFP expression

Confirmation with Wnt pathway by detecting nuclear β -catenin

- *RNA aptamer in position 3 or 6
- *Leukotriene D4 (LTD4) stimulation
- Increase of GFP and exonexclusion for aptamer in position 6No effect in position 3
- >Distinct positional and functional effects on splicing for a particular protein ligand >Tuning and flexibility of device >Able to monitor, detect disease biomarkers

Multiple-inputs-processing increase the overall response

Cell fate regulation upon multiple therapeutic inputs

Summary

- Protein can be efficiently directed to alter splicing pattern by aptamers
- Enable response to
- Modularity of the device:
 - No re-design needed
 - Clinical implementation
- Device able to integrate multiple stimuli
- Synthetic RNA controllers can achieve high alteration in downstream functional behavior
- >This technique can be used to build complex regulatory networks to program cell function

Artificial riboswitches for gene expression and replication control of DNA and RNA viruses

Patrick Ketzer^a, Johanna K. Kaufmann^{a,1}, Sarah Engelhardt^a, Sascha Bossow^b, Christof von Kalle^b, Jörg S. Hartig^c, Guy Ungerechts^{b,d}, and Dirk M. Nettelbeck^{a,2}

^aOncolytic Adenovirus Group, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), 69120 Heidelberg, Germany; ^bDepartment of Translational Oncology, National Center for Tumor Diseases, DKFZ, 69120 Heidelberg, Germany; ^cDepartment of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany; and ^dDepartment of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany

Aim:

- >Inhibition of viral replication and pathogenesis in eukaryotic cells
- >Validation approach for effective biological outcome control: *Adenovirus

*Measles

Requirements:

- >Short sequence
- >Applicable for both RNA and DNA virus
- >Active at high viral titer
- >Simple mode of action

>Aptazyme

Aptazyme

- Short RNA sequence (100bp)
- Self-cleaving ribozyme linked to an aptamer
- >ligand-dependant self-cleaving ribozyme

Advantages:

- *Inducible by small molecules
- *Enable conditional cleavage of RNA
- *Acting in cis
- *On or Off switch activity
- *Easily customized

Disavantages:

- *No aptazyme reported in mammals
- >Challenging application

Principle

Simon Ausländer,† Patrick Ketzer and Jörg S. Hartig*

Received 3rd November 2009, Accepted 26th January 2010

Principle

Adenovirus >dsDNA >nucleus >target E1A

Measles >ssRNA(-) >Cytoplasm >target F protein

Inducible-shutdown of viral gene expression and replication

Pre-exposure inhibition of particle production and cytotoxicity

Approach not transposable to all cancerous cells

Reducing baseline expression level of E1A

Challenging aptazyme approach on Measle virus

Summary

- Aptazyme enable specific inhibition of viral protein, affecting replication and spread
- 5'3'>3'>5' UTR regulation efficiency
- Dose-dependant regulation of aptazyme
- Able to target and regulate: DNA/RNA virus
- Able to act in the nucleus or cytoplasm
- Delay in the control of an established infection
- >Universal applicability of the aptazyme for gene regulation

Limitations:

- Suboptimal switch
- Not generalizable
- Effect on baseline gene expression

Improvements

Aptazyme insertion into the UTR:

To minimize effects on baseline protein expression without ligand addition

Variability of the aptazyme efficacy:

- A) Reducing the baseline level expression
- B) Increasing self-cleaving activity (=induction rate)

Targeting crucial viral genes:

>Alone or in combination

Challenges in mammalian cells:

Moderate switching activity

>Integration aptamer into ribozyme impair tertiary interloop structures

NATURE METHODS

A general design strategy for protein-responsive riboswitches in mammalian cells

Simon Ausländer¹, Pascal Stücheli¹, Charlotte Rehm², David Ausländer¹, Jörg S Hartig² & Martin Fussenegger^{1,3}

PUBLISHED ONLINE 5 OCTOBER 2014

Aim: Elaboration of a versatile system for broad use of ribozyme

Goals:

- *Decrease compromising structureal interference
- *Preserve optimal cleavage activity

Bimodal expression plateform

Size, sequence identity, structure shape and stability of the stem affect ribozyme performance by influencing the tertiary interloop contact

Screening procedure

Applicability of aptazyme

- Conditional shutdown of viral genes
- >In vitro/in vivo
- >Efficiency, timing, systemic activation
- >Less off-target
- Oncolytic virus:
- >Drug inducible safety switch
- Live virus vaccine

Thank you for you attention!

Principle

adenovirus

dsDNA

nucleus

nucleus

E₁A

replication

virus

genome type

replication

mRNA synthesis

target gene

level of control

measles virus

(-)ssRNA

cytoplasm

cytoplasm

F glycoprotein

infectivity of progeny

HammerHead Ribozyme

- >Ribonucleoprotein
- >3stem loop structure
- >catalytic core
- >Cleave mammalian mRNA
- >Irreversibly inhibit translation

>control the self cleavage activity

Procedure

