

Technical Journal Club September 15th

Christina Müller

High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire

Brandon J DeKosky¹, Gregory C Ippolito², Ryan P Deschner¹, Jason J Lavinder³, Yariv Wine¹, Brandon M Rawlings¹, Navin Varadarajan⁴, Claudia Giesecke^{5,6}, Thomas Dörner^{5,6}, Sarah F Andrews⁷, Patrick C Wilson⁷, Scott P Hunicke-Smith³, C Grant Willson^{1,8}, Andrew D Ellington^{3,8} & George Georgiou^{1-3,9}

TECHNICAL REPORTS

medicine

In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire

Brandon J DeKosky¹, Takaaki Kojima^{1,2}, Alexa Rodin¹, Wissam Charab¹, Gregory C Ippolito³, Andrew D Ellington⁴ & George Georgiou^{1,3,5,6}

- antibody repertoire is the sum of all circulating antibodies produced by the B cells
- total number of B lymphocytes ~ 1-2 x 10¹¹

Generation of the antibody repertoire:

- V(D)J recombination
- addition or deletion of nucleotides in regions where junctions occur

Functional gene segments in human IgG loci							
Sagment	Light chains		Heavy chain				
Segment	К	λ	Н				
Variable (V)	34-38	29-33	38-46				
Diversity (D)	-	-	27				
Joining (J)	5	4-5	6				
Constant (C)	1	4-5	9				

Georgiou et al. 2014

Why is it important to determine the antibody repertoire?

- > provides important information on protective and pathogenic immunity
- > capturing the nature of a successful antibody response
- ➤ Ig-sequencing combined with other techniques such as the expression and isolation of antigen-specific antibodies, sequencing of multiple RNAs from single cells or proteomic analysis help to identify antibody properties mediating protection against infectious diseases or autoimmune response

Why is it important to determine the antibody repertoire?

- > provides important information on protective and pathogenic immunity
- > capturing the nature of a successful antibody response
- ➤ Ig-sequencing combined with other techniques such as the expression and isolation of antigen-specific antibodies, sequencing of multiple RNAs from single cells or proteomic analysis help to identify antibody properties mediating protection against infectious diseases or autoimmune response

First steps – Low-throughput analysis of the antibody repertoire:

 determination of IgH and IgL V(D)J recombinants in a few hundred B cells per experiment based on Sanger sequencing (1990s)

Why is it important to determine the antibody repertoire?

- > provides important information on protective and pathogenic immunity
- > capturing the nature of a successful antibody response
- ➤ Ig-sequencing combined with other techniques such as the expression and isolation of antigen-specific antibodies, sequencing of multiple RNAs from single cells or proteomic analysis help to identify antibody properties mediating protection against infectious diseases or autoimmune response

First steps – Low-throughput analysis of the antibody repertoire:

 determination of IgH and IgL V(D)J recombinants in a few hundred B cells per experiment based on Sanger sequencing (1990s)

BUT

Low-throughput analysis provides only a small amount of information about the entire antibody repertoire & too labor intensive

High-throughput sequencing of the antibody repertoire

- NGS allows in-depth antibody repertoire studies

High-throughput sequencing of the antibody repertoire

- NGS allows in-depth antibody repertoire studies

Information about the endogenous pairing of the V heavy (V_H) and V light (V_L) chain is lacking

High-throughput sequencing of the antibody repertoire

Georgiou et al. 2014

High-throughput sequencing of the antibody repertoire

High-throughput sequencing of the antibody repertoire

LETTERS

High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire

Brandon J DeKosky¹, Gregory C Ippolito², Ryan P Deschner¹, Jason J Lavinder³, Yariv Wine¹, Brandon M Rawlings¹, Navin Varadarajan⁴, Claudia Giesecke^{5,6}, Thomas Dörner^{5,6}, Sarah F Andrews⁷, Patrick C Wilson⁷, Scott P Hunicke-Smith³, C Grant Willson^{1,8}, Andrew D Ellington^{3,8} & George Georgiou^{1–3,9}

Source of B cells

- Lymph nodes (28%), Spleen and mucosal surface (23%), Red bone marrow (17%)
- Peripheral blood (only 2% of the 1-2 x 10¹¹ B cells in the human body)
 - ! Ig transcription varies up to 100 fold between naive B cells and plasma cells!
 - → using unsorted bulk B cells will make it difficult to deduce cellular clonal frequencies

Source of B cells

- Lymph nodes (28%), Spleen and mucosal surface (23%), Red bone marrow (17%)
- Peripheral blood (only 2% of the 1-2 x 10¹¹ B cells in the human body)
 - ! Ig transcription varies up to 100 fold between naive B cells and plasma cells!
 - → using unsorted bulk B cells will make it difficult to deduce cellular clonal frequencies

a. FACS sorting

 PBMCs sorted for CD19+CD3-CD27+CD38int memory B cells

Source of B cells

- Lymph nodes (28%), Spleen and mucosal surface (23%), Red bone marrow (17%)
- Peripheral blood (only 2% of the 1-2 x 10¹¹ B cells in the human body)
 - ! Ig transcription varies up to 100 fold between naive B cells and plasma cells!
 - → using unsorted bulk B cells will make it difficult to deduce cellular clonal frequencies

a. FACS sorting

PBMCs sorted for CD19+CD3-CD27+CD38^{int}
 memory B cells

b. Single-cell isolation

- 125-pl wells molded in polydimethylsildoxan
 (PDMS) slides
- 1.7 x 10⁵ wells per slide

c. Cell lysis & mRNA capture

- poly(dT) magnetic beads added at an average 55 beads/well
- slides were incubated with optimized cell lysis solution (1% lithium dodecyl sulfate)
 - → complete cell lysis within < 1min

c. Cell lysis & mRNA capture

- poly(dT) magnetic beads added at an average 55 beads/well
- slides were incubated with optimized cell lysis solution (1% lithium dodecyl sulfate)
 - → complete cell lysis within < 1min

d. Emulsion linkage RT-PCR

- captured mRNA was emulsified with
 primers, RTase and thermostable DNA polymerase
- → RT-PCR & linkage PCR (Meijer et al. 2006)

DeKosky et al. 2013

c. Cell lysis & mRNA capture

- poly(dT) magnetic beads added at an average 55 beads/well
- slides were incubated with optimized cell lysis solution (1% lithium dodecyl sulfate)
- → complete cell lysis within < 1min

d. Emulsion linkage RT-PCR

- captured mRNA was emulsified with
 primers, RTase and thermostable DNA polymerase
- → RT-PCR & linkage PCR (Meijer et al. 2006)

e. NGS using Illumina MiSeq 2 x250pb

- sequencing of CDR-H3 and CDR-L3

Georgiou et al. 2014

c. Cell lysis & mRNA capture

- poly(dT) magnetic beads added at an average 55 beads/well
- slides were incubated with optimized cell lysis solution (1% lithium dodecyl sulfate)
- → complete cell lysis within < 1min

d. Emulsion linkage RT-PCR

- captured mRNA was emulsified with
 primers, RTase and thermostable DNA polymerase
- → RT-PCR & linkage PCR

e. NGS using Illumina MiSeq 2 x250pb

- sequencing of CDR-H3 and CDR-L3

f. Bioinformatic analysis

IgG+B cells from two healthy individuals

Plasmablasts from a healthy individual 7d after tetanus toxin immunization

IgG+B cells from two healthy individuals

B cells were spiked with immortalized IM-9 lymphoblasts (~4% of total mixture) Plasmablasts from a healthy individual 7d after tetanus toxin immunization

- > 61,000 B cells
- > 2,716 unique pairs
- correct pairing of IM-9 V_H and V_L
 78 fold above background

- ➤ 2,248 unique pairs
- correct pairing of IM-9 V_H and V_L
 125 fold above background

IgG+ B cells from two healthy individuals

B cells were spiked with immortalized IM-9 lymphoblasts (~4% of total mixture) Plasmablasts from a healthy individual 7d after tetanus toxin immunization

Memory B cells from a healthy individual 14d after influenza vaccination

- > 61,000 B cells
- > 2,716 unique pairs
- correct pairing of IM-9 V_H and V_L
 78 fold above background

- > 47,000 B cells
- ➤ 2,248 unique pairs
- correct pairing of IM-9 V_H and V_L
 125 fold above background

Spearman rank correlation coefficient= 0.804; P < 10⁻²⁹

IgG+B cells from two healthy individuals

Plasmablasts from a healthy individual 7d after tetanus toxin immunization

1

B cells were spiked with immortalized ARH-77

40-50% 30-40%

20-30% 15-20% 10-15%

5-10% 1-5% <1%

0%

> 86 unique pairs

IgG+B cells from two healthy individuals

Plasmablasts from a healthy individual 7d after tetanus toxin immunization

B cells were spiked with immortalized ARH-77

40-50% 30-40%

20-30% 15-20% 10-15%

5-10% 1-5% <1%

0%

healthy individuals

- > 400 recovered B cells
- > 86 unique pairs

expression of ten of the identified V_H:V_L pairs as IgG proteins in HEK293 cells

IgG+B cells from two healthy individuals

> 400 recovered B cells

> 86 unique pairs

expression of ten of the identified V_H:V_L pairs as IgG proteins in HEK293 cells

Plasmablasts from a healthy individual 7d after tetanus toxin immunization

B cells were spiked with immortalized ARH-77

Table 1 TT-binding affinities of IgG antibodies sequenced from TT+ peripheral plasmablasts

Antibody ID	Gene family assignment ^a	Affinity (K_D)
TT1	HV3-HD1-HJ6: KV3-KJ5	1.6 ± 0.1 nM
TT2	HV3-HD3-HJ4: LV3-LJ1	$14 \pm 3 \text{ nM}$
TT3	HV1-HD2-HJ4: KV3-KJ5	$3.6 \pm 1.8 \text{ nM}$
TT4	HV2-HD2-HJ4: KV1-KJ1	$2.7 \pm 0.3 \text{ nM}$
TT5	HV4-HD2-HJ6: KV2-KJ3	$18 \pm 4 \text{ nM}$
TT6	HV1-HD3-HJ4: KV1-KJ2	$0.57 \pm 0.03 \text{ nM}$
TT7	HV4-HD3-HJ4: KV1-KJ2	$0.46 \pm 0.01 \text{ nM}$
TT8	HV3-HD3-HJ4: LV8-LJ3	$2.8 \pm 0.3 \text{ nM}$
TT9	HV4-HD2-HJ4: KV1-KJ1	$0.10 \pm 0.01 \text{ nM}$
TT10	HV1-HD3-HJ5: KV3-KJ5	$1.6\pm0.1~\text{nM}$

IgG+B cells from two healthy individuals

Plasmablasts from a healthy individual 7d after tetanus toxin immunization

Memory B cells from a healthy individual 14d after influenza vaccination

B cells were spiked with immortalized IM-9

IgG+B cells from two healthy individuals

Plasmablasts from a healthy individual 7d after tetanus toxin immunization

<u>Identification of V_H:V_L pairs by high-throughput approach vs scRT-PCR:</u>

Sanger scRT-PCR	High-throughput approach	
168 single memory B cells	8,000 single memory B cells	
168 RT- & 504 nested PCR reactions → Sanger Sequencing	Workflow as described → MiSeq	
50 unique V _H :V _L pairs	240 unique V _H :V _L pairs	

Memory B cells from a healthy individual 14d after influenza vaccination

B cells were spiked with immortalized IM-9

> 240 unique pairs

IgG+B cells from two healthy individuals

Plasmablasts from a healthy individual 7d after tetanus toxin immunization

<u>Identification of V_H:V_L pairs by high-throughput approach vs scRT-PCR:</u>

Sanger scRT-PCR	High-throughput approach	
168 single memory B cells	8,000 single memory B cells	
168 RT- & 504 nested PCR reactions → Sanger Sequencing	Workflow as described → MiSeq	
50 unique V _H :V _L pairs	240 unique V _H :V _L pairs	

Memory B cells from a healthy individual 14d after influenza vaccination

B cells were spiked with immortalized IM-9

Seq ID	Isotype	CDR-H3	Paired CDR-L31	Source
2D02	IgM	gcgagaggcggaaatgggcgaccetttgacaac	gcagcatgggatgacagcctgaatggttgggtg	Sanger scRT-PCR
2D02	IgM	gcgagaggcggaaatgggcgaccetttgacaac	gcagcatgggatgacagcctgaatggttgggtg	MiSeq VH:VL
3D05	IgM	gcgagaaggtactttgactac	gnagcatgggatgacagcctgaatgtttggntg	Sanger scRT-PCR
3D05	IgM	gcgagaaggtactttgactac	gcagcatgggatgacagcctgaatgtttggctg	MiSeq VH:VL
1E02	IgG1	gegegacatggeeetgegggaaaaagegegtatggttttgatate	cagteetatgaeageggaetgaatggttatgtggte	Sanger scRT-PCR
1E02	lgG	gegegaeatggeeetgegggaaaaagegegtatggttttgatate	cagtectatgacaacagactgaatggttatgtggtg	MiSeq VH:VL
3A01	IgG3	gcgagagtaatagcagctcgcgaccgccggatcactcctaactactaccgccctatggacgtc	caggtgtgggatagtagtagtgaccatcaggtg	Sanger scRT-PCR
3A01	lgG	gegagagtaatageagetegegacegeeggateaeteetaattaetaeegeeetatggaegte	caggtgtgggacagtagtagtgatcatcaggtg	MiSeq VH:VL

¹ The 2D02 and 3D05 CDR-L3 sequences are highly similar but differ by two bases

Conclusion Paper 1

Workflow for high-throughput sequencing of the paired heavy and light chain repertoire

- > entire process can be completed by a single investigator in 10 working hours over 4days
 - → identification of 2,716 unique V_H:V_L to a cost of \$550

vs. > \$25,000 using scRT-PCR protocol

- identification of TT specific antibodies with high affinity
 - → can be applied to investigate vaccine efficacy
- high CDR-H3:CDR-L3 pairing accuracy
 - → longer sequencing reads are needed to distinguish somatic variants based on mutations between the FR1 and CDR2 region

Georgiou et al. 2014

- \triangleright capacity > 5 x 10⁴ single cells per experiment
 - \rightarrow greater depth still needed (10ml blood draw contains ~0.7 x 10⁶ to 4 x10⁶ B cells)

TECHNICAL REPORTS

In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire

Brandon J DeKosky¹, Takaaki Kojima^{1,2}, Alexa Rodin¹, Wissam Charab¹, Gregory C Ippolito³, Andrew D Ellington⁴ & George Georgiou^{1,3,5,6}

Greater depth by using an axissymmetric flow-focusing devices

DeKosky et al. 2015

Greater depth by using an axissymmetric flow-focusing devices

DeKosky et al. 2015

Greater depth by using an axissymmetric flow-focusing devices

DeKosky et al. 2015

droplet formation with predictable size distribution

Evaluation of encapsulation and droplet size distribution

- middle tubing containing PBS and Trypan blue (0,4% v/v)
- 250,000 cells per minute

Evaluation of encapsulation and droplet size distribution

- middle tubing containing PBS and Trypan blue (0,4% v/v)
- 250,000 cells per minute

- ➤ Trypan blue exclusion → cells remained viable
- ➤ droplet diameter 73 ± 20µm

- b. Cell lysis & mRNA capture
 - emulsion maintained for 3min
- c. poly(dT) bead recovery
 - chemical breakage of emulsion
- d. Emulsion linkage RT-PCR
- e. NGS using Illumina MiSeq 2 x 250pb
 - sequencing of CDR-H3 and CDR-L3

Georgiou et al. 2014

Memory B cells from healthy individuals in two technical replicates

B cells were expanded for 4 days

Memory B cells from healthy individuals in two technical replicates

B cells were expanded for 4 days

Table 1 High-throughput VH-VL sequence analysis of CD3-CD19+CD20+CD27+ in vitro-expanded human B cells

Human donor	V-region primer set	No. cells analyzed	Emulsification rate (cells per minute)	Observed VH-VL clusters	CDR-H3 detected in both replicates	CDR-H3-CDR-L3 clusters detected in both replicates	VH-VL pairing precision
Donor 1	Framework 1	1,600,000	50,000	129,097	37,995	36,468	98.0%
Donor 2	Framework 1	810,000	50,000	53,679	19,096	18,115	97.4%
Donor 3	Leader peptide	210,000	33,000	15,372	4,267	4,170	98.9%

Identification and characterization of promiscuous V_L junctions

- light chains have a much lower theoretical diversity than heavy chains
 - → light chain sequences pair with multiple heavy chains (promiscuous light chains)

Functional gene segments in human IgG loci				
Cogmont	Light	Heavy chain		
Segment	К	λ	Н	
Variable (V)	34-38	29-33	38-46	
Diversity (D)	-	-	27	
Joining (J)	5	4-5	6	
Constant (C)	1	4-5	9	

Identification and characterization of promiscuous V_L junctions

- light chains have a much lower theoretical diversity than heavy chains
 - → light chain sequences pair with multiple heavy chains (promiscuous light chains)
 - ➤ Are the 50 most frequent promiscuous V_L junctions of donor 1 also present in donor 2 and 3?

49/50 were present

→ promiscuous V_L are shared across individuals ("public" V_L)

Functional gene segments in human IgG loci				
Segment	Light	Heavy chain		
	К	λ	Н	
Variable (V)	34-38	29-33	38-46	
Diversity (D)	-	-	27	
Joining (J)	5	4-5	6	
Constant (C)	1	4-5	9	

Identification and characterization of promiscuous V_L junctions

- light chains have a much lower theoretical diversity than heavy chains
 - → light chain sequences pair with multiple heavy chains (promiscuous light chains)
 - ➤ Are the 50 most frequent promiscuous V_L junctions of donor 1 also present in donor 2 and 3?

49/50 were present

→ promiscuous V₁ are shared across individuals ("public" V₁)

Average of nontemplated bases in the VJ junction?

Functional gene segments in human IgG loci				
Segment	Light	Heavy chain		
	К	λ	Н	
Variable (V)	34-38	29-33	38-46	
Diversity (D)	-	-	27	
Joining (J)	5	4-5	6	
Constant (C)	1	4-5	9	

Identification and characterization of promiscuous V_L junctions

- light chains have a much lower theoretical diversity than heavy chains
 - → light chain sequences pair with multiple heavy chains (promiscuous light chains)
 - ➤ Are the 50 most frequent promiscuous V_L junctions of donor 1 also present in donor 2 and 3?

49/50 were present

→ promiscuous V₁ are shared across individuals ("public" V₁)

Average of nontemplated bases in the VJ junction?
 Average of 0.04 (promiscuous)
 vs. 5 (non-promiscuous)

Cogmont	Light (Heavy chain	
Segment	К	λ 29-33	Н
Variable (V)	34-38	29-33	38-46
Diversity (D)	-	-	27
Joining (J)	5	4-5	6
Constant (C)	1	4-5	9

Identification and characterization of promiscuous V₁ junctions

> KV1-39-KJ2 (9aa CDR-L3) and LV1-44-LJ3 (11aa CDR-L3) were examined in more detail (containing V and G genes with high prevalence in steady-state human immune repertoires)

Identification and characterization of promiscuous V₁ junctions

> KV1-39-KJ2 (9aa CDR-L3) and LV1-44-LJ3 (11aa CDR-L3) were examined in more detail (containing V and G genes with high prevalence in steady-state human immune repertoires)

→ V_L nucleotide promiscuity due to VL recombination rather than due to B cell activation and clonal expansion

Quantification of allelic inclusion

- one B cell expressing two B cell receptors
- involved in autoimmunity
- detected in 0.2-0.5% of human memory B cells (Giachino et al. 1995)

Quantification of allelic inclusion

- one B cell expressing two B cell receptors
- involved in autoimmunity
- detected in 0.2-0.5% of human memory B cells (Giachino et al. 1995)
 - > Can the event of allelic inclusion be detected?
 - Identification of heavy chain clusters paired with multiple light chains which were encoded by distinct Vκλ and J κλ genes using an iterative loop
 - cross-confirmation in both replicates

Quantification of allelic inclusion

- one B cell expressing two B cell receptors
- involved in autoimmunity
- detected in 0.2-0.5% of human memory B cells (Giachino et al. 1995)
 - > Can the event of allelic inclusion be detected?
 - Identification of heavy chain clusters paired with multiple light chains which were encoded by distinct Vκλ and J κλ genes using an iterative loop
 - cross-confirmation in both replicates

detection in 0.4% of V_H clusters of donor 1 and 2

Quantification of allelic inclusion

- one B cell expressing two B cell receptors
- involved in autoimmunity
- detected in 0.2-0.5% of human memory B cells (Giachino et al. 1995)
 - > Can the event of allelic inclusion be detected?
 - Identification of heavy chain clusters paired with multiple light chains which were encoded by distinct Vκλ and J κλ genes using an iterative loop
 - cross-confirmation in both replicates

detection in 0.4% of V_H clusters of donor 1 and 2

→ consistent with the study by Giachino

Allelic inclusion can be studied and quantified using this approach

Conclusion

High-throughput sequencing of the paired heavy and light chain repertoire

- \triangleright great depth >2 x 10⁶ per experiment (vs. capacity > 5 x 10⁴ Paper 1)
- ➤ high accuracy of CDR-H3:CDR-L3 pairing
- > fast and low costs
- > can be used as tool to study allelic inclusion or vaccine efficacy

DeKosky et al. 2015

Thank you for your attention!!!

