Correlative imaging: Because two microscopes are better than one.

Yvette Zarb

Department of Neurosugery

Fluorescence microscopy

Identifies specific molecules

 Enables the study of the molecules' biological role

- Limitations:
 - A large fraction is unlabelled
 - Lowest resolution is 10nm

Adapted from: deBoer, Hoogenboom & Giepmans, 2015

Electron microscopy (EM)

To study molecules in their biological context and at high resolution

Limitations:

- Ultrastructural analysis is done in grayscale
- Biological samples are in a fixed state
- Molecules are hard to define
- Finding rare events is hard

Immuno-EM

- Difficult to master
- Destruction/ inacessability to antigens
- Lack of suitable antibodies
- Size of antibodies limits the resolution

http://www.researchgate.net/

Correlative Light and Electron Microscopy (CLEM)

- Combines the strengths of the two imaging techniques
- Recent developments in several aspects of this technique has made it a powerful tool
- Combinations of these methods can be:
 - Samples are analysed by fluorescence imaging and then processed for EM
 - Ultrathin sections prepared for EM which are imaged with LM

Taken from: deBoer, Hoogenboom & Giepmans, 2015

Paper 1 - CLEM Optimisation

NATURE METHODS | ARTICLE

Protein localization in electron micrographs using fluorescence nanoscopy

Shigeki Watanabe, Annedore Punge, Gunther Hollopeter, Katrin I Willig, Robert John Hobson, M Wayne Davis, Stefan W Hell & Erik M Jorgensen

CLEM optimisation

Cryo-sections lack tissue contrast

 EM techniques quench fluorophores by acidic, dehydrated and oxidizing conditions.

 In this paper: optimisation of each step of sample preparation

Study principle

- Use C.elegans
 - Fluorescent proteins stably expressed
 - EM methods are well established

- Target proteins: Citrine and Eos/Dendra
 - H2B nucleus easily visualized
 - TOM20 mitochondrion cross section is a good test of super-resolution technologies
 - α-liprin neurons are the most sensitive to fixation

Optimization of fixatives

Aldehyde-based fixatives

0.1% Osmium tetroxide fixative

Optimization of fixatives

0.1% Potassium permanganate 0.001% Osmium tetraoxide

Taken from: deBoer, Hoogenboom & Giepmans, 2015

Optimization of Plastic

- Embed tissue in plastic resin for ultra-thin sectioning
- Polymerization requires dehydration and heat
 - Denaturing the proteins & fluorophores
- In this paper: Hydrophilic, low-temp resins
 - Included 2 5% water

Optimization of Plastic

- Lowicryl K4M
 - Most hydrophilic resin
 - 5% inclusion of water led to poor polymerisation

LR Gold

- Polymerized rapidly
- Did not penetrate the tissue

LR White

- pH is too acidic for fluorophores
- Neutralized: good preservation, irregular polymerisation

Optimization of Plastic

- Glycol methylacrylate (GMA)
 - 3% water
 - Polymerisation at pH8
 - Fluorescence brighter than LR White

- Limitations
 - Does not cross-link to the cuticle
 - Tissue sectioned thicker than 70nm (approx 100nm)

Confocal & STED

Confocal is diffused

STED has an improved resolution

 α-liprin was not resolved, as expected

Alignment of LM to EM

Silica beads as fiduciary marks

 Fluorescent in UV light

Reflect electrons

Correlation fluorescence and electron microscopy

Histone 2B

TOM20

α-liprin

CLEM using PALM

Conclusion – paper 1

- CLEM can be used to study a molecule in its biological context
- For this method SEM is preferred due to the thickness of the section
 - Thickness needed for the generation of an adequate fluorescence signal
- For high resolution in SEM requires a good production of back-scattered electrons
 - High atomic stains quench fluorescence
 - Alternative (uranyl acetate) images not as crisp

Paper 2 – Fluorophore optimization

NATURE METHODS | BRIEF COMMUNICATION

Fixation-resistant photoactivatable fluorescent proteins for CLEM

Maria G Paez-Segala, Mei G Sun, Gleb Shtengel, Sarada Viswanathan, Michelle A Baird, John J Macklin, Ronak Patel, John R Allen, Elizabeth S Howe, Grzegorz Piszczek, Harald F Hess, Michael W Davidson, Yalin Wang & Loren L Looger

Fluorophore optimization

 Compromise between fluorescent signal and preservation of ultrastructure architecture

 In this paper: demonstrate two mEos4 variants, better survive OsO₄ fixation

Testing of mEos2 mutants

Analytical ultracentrifugation

Fluorescence retention

Consecutive-section approach

Correlation imaging

TEM

Lamin-A

Correlation

Same-section approach

Correlative PALM and TEM/SEM

TEM

SEM

Lamin-A

Conclusion – Paper 2

- Ultrastructure is preserved
- Staining for both approaches was similar
- Same-section approach:
 - Allows more precise, quantitative registration (fiduciary marks)
- Consecutive-section approach:
 - easier and minimizes sample handling
- mEos4b is effectively a pure monomer
 - Target proteins fuse reluctantly
- mEos4a is appropriate for broader staining
 - Whole cells or organelles

Limitations of CLEM

- Implementation of CLEM is preceded by several considerations
 - Research questions, models & microscopes available
- Always LM before EM
- Only samples that work in plastic resin can be scaled up
 - · Enables serial sectioning
- CLEM is an improvement over immuno-EM
 - Does not depend on antibodies
 - Some proteins do not tolerate fluorescent tags
 - May disrupt function or localization
- LM looses its 3-dimensiality
 - Z-dimension resolution is lower than x- and y-axis resolution
 - Reconstructing the volume of the tissue
 - 3D imaging

Developments

Introduction of correlative light and airSEMTM microscopy imaging for tissue research under ambient conditions

Inna Solomonov^{1*}, Dalit Talmi-Frank^{1*}, Yonat Milstein², Sefi Addadi², Anna Aloshin¹ & Irit Sagi¹

Correlative light and electron microscopy enables viral replication studies at the ultrastructural level

Kirsi Hellströma, Helena Vihinenb, Katri Kallioa, Eija Jokitalob, Tero Aholaa, 🎍 💌

Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections

Carolien van Rijnsoever, Viola Oorschot & Judith Klumperman

Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins

Errin Johnson¹, Elena Seiradake², E. Yvonne Jones², Ilan Davis³, Kay Grünewald² & Rainer Kaufmann^{2,3}

Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy

Horng D. Ou^{a, b}, Thomas J. Deerinck^c, Eric Bushong^c, Mark H. Ellisman^{b, c, d}, Clodagh C. O'Shea^{a, b}, ≜ . ≅

Thanks!!

Commercial integrated CLEM microscopes

Taken from: deBoer et al., 2015

PALM principle

- Photoactivated light microscopy
- controlled activation of sparse subsets fluorescent molecules
- The PALM image is a composite of all the single molecule coordinates

Balagopalan et al., 2011

STED principle

stimulated emission depletion

 built on the basis of a confocal laser scanning microscope

 inhibit fluorescence emission

Balagopalan et al., 2011

http://www.anes.ucla.edu/sted/principle.html

Steps in sample preparation for EM

- Rapid freezing
 - Water molecule immobilization, no ice crystals
- Freeze-substitution
 - Fixatives dissolved in organic solvent to replace water
- Infiltration with the plastic resin
- Polymerization
- Sectioning