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1.Implantable medical devices
2.Implantable device for diagnostics
3.Active drug delivery with implantable chip
4.Implantable lab-on-a-chip for monitoring

5.Improvement of the materials



Implantable medical devices

What is the aim to implant

Prosthetics , compensation for loss of function, beauty




Implantable medical devices

What is the aim to implant

Drug delivery

Passive drug release

Active drug release
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Subcutaneous Anabolic osteoporosis treatment: regular and
silicone/ethylene vinyl acetate implants PulsatilciniZay

Or degradable lactic-co-glycolic acid

R. Farra, First-in-Human Testing of a Wirelessly Controlled Drug
Delivery Microchip, Science, 2012



Implantable medical devices
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D. Karen, Implantable Diagnostic Device for Cancer Monitoring,
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Ling Y., Implantable magnetic relaxation sensors measure
cumulative exposure to cardiac biomarkers, Nat. Biotech., 2011
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Implantable magnetic relaxation
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When MNPs aggregate, these clustered particles change t
water protons, which can be detected by nuclear magn
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Implantable Diagnostic Device for Cancer Monitoring

D. Karen, Implantable Diagnostic Device for Cancer Monitoring, Biosens Bioelectron, 2009

Possible application field:
Parathyroid adenoma, control of the neoplastic tissue removal after tumor resection

Conventional method: Acute serum PTH levels is an indicator of whether additional
removal of parathyroid tissue is needed, sensitivity limits of ELISA

Aim:
Develop a tool to repeatedly sample the local environment for tumor biomarker,
chemotherapeutic agent, and tumor metabolite concentrations

Model:
Mouse model, ectopic tumors (JEG-3 human epithelial cell line, secrete human chorionic

gonadotropin beta)
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Implantable Diagnostic Device for Cancer Monitoring

D. Karen, Implantable Diagnostic Device for Cancer Monitoring, Biosens Bioelectron, 2009

Results:
hCG-B plasma concentration profiles for the first 18 days after tumor induction in four mice
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Device implantation was performed when a sharp increase in either
tumor size or plasma hCG concentration was observed, between 13 to 19 days after tumor cell

injection

Mice were divided into two main groups: with a tumor (n = 27) and without
a tumor (n = 7). Mice with tumors received one device, implanted subcutaneously near the
tumor site.Mice without tumors received two devices, one on each flank



Implantable Diagnostic Device for Cancer Monitoring

D. Karen, Implantable Diagnostic Device for Cancer Monitoring, Biosens Bioelectron, 2009
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Implantable sensor for cardiac biomarkers

Ling Y., Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers, Nat. Biotech., 2011

Model:

in vivo in a murine model of myocardial infarction (left anterior descending artery
ligation)characterized by the release of three clinically validated biomarkers at
physiological concentrations: Cardiac Troponin |, Myoglobin, Creatine Kinase

Evidence of cardiac biomarker extravasation from serum to the subcutaneous space
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Implantable sensor for cardiac bio

Ling Y., Implantable magnetic relaxation sensors measure cumulative exposure to

C AT, vs. infarct size
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Implantable sensor for cardiac bioma

Ling Y., Implantable magnetic relaxation sensors measure cumulative exposure to cardi

Critics:

1. Sensitive detection of cTnl

2. MRSw sensors would need a CV of <10% for clinic
currently have a sensitivity of ~10 pg/ml)
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Wirelessly Controlled Drug Delivery Microchip

R. Farra, First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip, Science, 2012

Application field:
Osteoporosis

Conventional method option: Human parathyroid hormone fragment [hPTH(1-34)] (9kd,
promotes osteoclast activity), subcutaneous daily injections (20/40ug) for up to 2 years

Aim:
Develop a wirelessly programmable implantable drug delivery microchip reservoir, clinical
trial

Objectives:
Assess Pharmacokinetics and safety. Assess bioactivity.



Wirelessly Controlled Drug Delivery Microchip

R. Farra, First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip, Science,
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Wirelessly Controlled Drug Delivery Microchip

R. Farra, First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip, Science, 2012

hPTH(1-34) pharmacokinetics vs conventional treatment

Table 3. Average PK parameters for hPTH(1-34) from the microchip device compared to 2 x 20 pg and
single 20 ng FORSTEOQ injections. Data are means = SD. ND, not determined

Number

A UCl]-]ast

Drug, method of Dose Cinax T max T

delivery (ng) (pg/ml) (min) (ng- (min) Ref.
samples min/ml)

hPTH(1-34), 405 £ 161 45+ 11 44 + 8 70£20  This

: 40 28

implant study

FORSTEO, 2 x 14 400 + 194 23+ 10 28+ 9 53+ 15 This

injection 20 study

FORTEO, 40 34 460 (146 —  58(40— 46 (17— ND (21)

injection™® 875) 91) 69)

FORSTEO, 20 14 192 + 55 22+ 6 14 + 4 55+16 This

injection study

FORTEO, injection 20 22 151457 32415 1044 gi%f (21)

* Range shown in parentheses.

The FDA and the EMA require the PK profiles once released from the device to be
within 80% to 125% of the approved drug’s PK values




Wirelessly Controlled Drug Delivery Microchip

R. Farra, First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip, Science, 2012

hPTH(1-34) pharmacokinetics vs conventional treatment

Two markers were monitored over the course of the study: PINP (Serum type 1
procollagen N-terminal), a widely accepted bone formation marker and a predictor of
long-term increase in bone mass, and the bone resorption marker, CTX (serum collagen

type 1 cross-linked C-telopeptide)
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Wirelessly Controlled Drug Delivery Microchip

R. Farra, First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip, Science, 2012
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The average distance to the neovascularization bed across all patients was 0.1 mm
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Fully Implantable Biosensor Array

S. Ghoreishizadeh, An Implantable Bio-Micro-system for Drug Monitoring, 2013 IEEE

C. Baj-Rossi, G. De Micheli, Fabrication and Packaging of a Fully Implantable Biosensor Array, 2013,

Lab-on-a-chip design

WE diameters

pH sensor

T sensor

Pads for IC integration

\!

Fig. 1. Photographs of the microfabricated platform (center), with the three
geometries for the working electrode (WE), the pads for integration with ICs
and the pH sensor and the temperature sensor.

IC — for readout




Fully Implantable Biosensor Array

S. Ghoreishizadeh, An Implantable Bio-Micro-system for Drug Monitoring,

C. Baj-Rossi, G. De Micheli, Fabrication and Packaging of a Fully Implantable Biose

Lab-on-a-chip design

Parylene C coatin



Fully Implantable Biosensor Array

S. Ghoreishizadeh, An Implantable Bio-Micro-system for Drug Monitoring, 2013 |EEE

C. Baj-Rossi, G. De Micheli, Fabrication and Packaging of a Fully Implantable Biosensor Array, 2013, IEEE

Lab-on-a-chip ex vivo test

Etoposide and Mitoxantrone — antineoplastic agents, DMSO soluble “drug samples were

added at the right concentration” ???

Cyclic Voltammetry Potential Waveform
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the substance

Cathodic Potential
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Electrochemical detection of substances — cyclic voltammetry

Cyclic voltammetry is used to measure red-ox potential of

- Voltage (V)
Biomolecule
Voltage Current
(mV) (n A)
Etoposide 495 0.45
Mitoxantrone 535 0.81




Fully Implantable Biosensor Array

S. Ghoreishizadeh, An Implantable Bio-Micro-system for Drug Monitoring, 2013 IEEE
C. Baj-Rossi, G. De Micheli, Fabrication and Packaging of a Fully Implantable Biosensor Array, 2013, IEEE

Lab-on-a-chip in vivo biocompatibility test

Iplanted four prototypes in mice for 30 days.
At the end of the period, the implant site was washed with PBS, and levels of ATP and

neutrophils in the elution liquid were quantified to follow the local inflammatory response
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Fig. 5. ATP concentrations (nM) and percentages of neutrophils recovered
from APs treated as indicated.

Unfortunately, a cell layer covered the surface of the sensing platform



Improvement of the material

Zwitterionic hydrogels implanted in mice resist the foreign-body reaction, Lei Zhang,

Coating material for the chip

PEGX

poly(2-hydroxyethyl metha
poly(ethylene glycol



Improvement of the materials

Zwitterionic hydrogels implanted in mice resist the foreign-body reaction, Lei Zhang, Nature Biotechnology 31, 553-556 (2013)

Masson’s trichome

Coating material for the chips

Blue staining indicates collagen capsule

MECA-32 antibody, which
binds to blood vessel
endothelial cells (red
arrows)
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Improvement of the materials

Zwitterionic hydrogels implanted in mice resist the foreign-body reaction, Lei Zhang, Nature Biotechnology 31, 553-556 (2013)

Coating material for the chips
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Zwitterionic hydrogels implanted in mice resist the foreign-body reaction, Lei Zhang, Nature Bi

Improvement of the materials

Coating material for the chips
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