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Agenda

1) Basis of structural DNA nanotechnology
2) DNA origami technique (2D, 3D, complex shape)
3) Programmable nanofactory

4) Application



Watson-Crick DNA Helix

3.5nm

2 nm

The paper in Nature 1953, Nobel prize in 1962

Simmel FC, Curr Opin in Biotech 2012



Nadrian C. Seeman’s thought in 1980’s

Crystallographer Woodcut depth by MC Escher

Can DNA be used in a non-biological material — as a material for
molecular construction? Seeman NC, J. Theor Biol 1982

» Two molecule of DNA pair to form a double helix when their sequences
are complementary.
* High affinity of two complementary DNA strands

“Structural DNA nanotechnology”



Hybridization
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High specificity
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High spatial precision
High spatial and flexibility

We can predict the local product structure formed when sticky ends cohere.
-> no need to determine crystal structure

Seeman NC, Ann. Rev. Biochem 2010



Self-assembly of Branched DNA (*‘Holliday Junctions™)
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Seeman NC, Ann. Rev. Biochem 2010
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Sequence design and sequence symmetry minimization

Each strands are broken up to series of 13 overlapping tetramer

- Each tetramer needs to be unique (out of 256 tetramers)

- To avoid formation of linear duplex DNA, linear complements to each of 12 tetramers
flanking the branch point are also forbidden.

- Homology sequence between trimers can be ignored as the free energy between
octamers win out.



Motifs of DNA Lattices
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Seeman NC, Ann. Rev. Biochem 2010
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However, technical limitations are:

sInvolves a large number of short oligonucleotides and complicated construction process
sthe yield of complete structures is highly sensitive to stoichiometry (relative ratios of strands)



Breakthrough in 2006

MATURE|Val 44016 March 2006

ARTICLES

Folding DNA to create nanoscale shapes
and patterns

Paul W. K. Rothemund'

Several restrictions in previous method:
1) Sequences must be optimized to avoid secondary structure or undesired binding interactions
2) Strand must be highly purified

3) Strand concentrations must be precisely equimolar



The design of DNA origami

15t step: to built a geometric model of a DNA structure that will approximate the desired shape
by even number of parallel double helices
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The design of DNA origami

15t step: to built a geometric model of a DNA structure that will approximate the desired shape
by even number of parallel double helices

y

2"d step: to fold a single long scaffold DNA strand back and forth in a raster fill pattern

’_I: Vertical
raster reversal,

: 7] 3turns

Raster progression, 4.5 turns



The design of DNA origami

15t step: to built a geometric model of a DNA structure that will approximate the desired shape
by even number of parallel double helices

y

2"d step: to fold a single long scaffold DNA strand back and forth in a raster fill pattern

y

3'd step: to design a set of “staple strands” that provide Watson-Crick complements, and
create the periodic crossovers to arrange the crossovers in alternating directions in
alternating columns




The design of DI+, C
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The design of DNA origami

15t step: to built a geometric model of a DNA structure t
by even number of parallel double helices | _m l
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5th step: pairs of adjacent staples are merged across niches to achieve higher binding
specificity and higher biding energy which results in higher melting temperatures




Validation

Material:
- Virus M13mp18 (single stranded 7,249-nt)
- 100-fold excess of 200-250 staple and “reminder strands” to fold the unused sequence

Method:

*All are mixed and annealed from 95 to 20 degree C in <2h

«Samples were deposited on mica and only folded DNA stuck to the surface while others
remained in solution

«Atomic force microscope (AFM) without purification

13% well formed with ratio of 1.00 to 1.07 (W vs H)
25% rectangular form

25% hourglass shape




Well formed 90% 63% 70% <1% 88%



Binary pixels using labeled staples

Labeled staples (3nm above the mica) -> light ‘1’ pixels
Unlabeled staples (1.5nm) -> dark ‘0’ pixels

Folding error is similar to unpatterned origami
Most defects were “missing pixels” although only 6% error




Summary of novel DNA origami method

Important factors for the novel DNA origami folding are:

1) Strand invasion that allows correct binding of excess staples

2) An excess of staples to displace unwanted secondary structure

3) Cooperative effects in which correct addition of each staples organizes the scaffold for
subsequent binding of adjacent staples

4) Design that intentionally does not rely on binding between staples



3D

nature Vol 459|21 May 2009| doi:10.1038/ nature08016

Self-assembly of DNA into nanoscale
three-dimensional shapes

Shawn M. Douglas"*?, Hendrik Dietz"*, Tim Liedl"*, Bjérn Hogberg"?, Franziska Graf"** & William M. Shih**?




Vol 459| 21 May 2009 doi:10.1038/ nature08016



More complicated shape: Twisted and curved

Folding DMNA into Twisted and Curved Nanoscale Shapes
Hendrik Dietz et al.

Science 325, 725 (2009);

DOz 10.1126/cience. 1174251
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What is missing?



DNA walker

1) 2h R.T. incubation with
“fuel DNA”

2) 2h R.T. incubation with
“step DNA”

Walking device
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Gu H et. al., Nature 2010



“Big” Four Steps in a Nanoscale
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Gu H et. al., Nature 2010



Cargo pick-up station
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Programmable assembly line “Nanofactory”
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Programmable cargo-pick up station
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Programmable cargo-pick up station
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Summary of Nanofactory

This system adds elements of both programmability and temporal control to DNA assisted

assembly

As a perspective,
with some modification it would allow the construction of new chemical species that are not

readily synthesized by other means.



1)

2)

3)

4)
5)

Potential application for Other fields

Novel biological experiments that aims at modelling complex protein assemblies and
examining the effects to spatial organization

Molecular electronic or plasmonic circuits by attaching nanowires, carbon noanotubes or
gold nanoparticles

Nanoelectronics (e.g. RAM)

Nanophotonics

Coordination chemistry (Gartner JZ, 3 Am Chem Soc 2002)



Potential application for Biology

1) NMR structure determination (Douglas SM, PNAS 2007)

membrane proteins are encoded by 20-35% but represent only <1% known protein structure



Potential application for Biology

1) NMR structure determination (Douglas SM, PNAS 2007)
membrane proteins are encoded by 20-35% but represent only <1% known protein structure

2) Study of interactive biomolecular networks (Rinker S, Nat Nanotech 2010)

17.2 nm




1)

2)
3)

Potential application for Biology

NMR structure determination (Douglas SM, PNAS 2007)
membrane proteins are encoded by 20-35% but represent only <1% known protein structure
Study of interactive biomolecular networks (Rinker S, Nat Nanotech 2010)

Molecular probe for single cell or molecule imaging (Lin C, Nat Chem 2012; Derr, Science 2012; Acuna

GP, Science 2012)
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1)

2)
3)

4)

Potential application for Biology

NMR structure determination (Douglas SM, PNAS 2007)
membrane proteins are encoded by 20-35% but represent only <1% known protein structure
Study of interactive biomolecular networks (Rinker S, Nat Nanotech 2010)

Molecular probe for single cell or molecule imaging (Lin C, Nat Chem 2012; Derr, Science 2012; Acuna
GP, Science 2012)

Generation of artificially synthesized new molecule (Langecker, Science 2012)




1)

2)
3)

4)
5)

Potential application for Biology

NMR structure determination (Douglas SM, PNAS 2007)
membrane proteins are encoded by 20-35% but represent only <1% known protein structure
Study of interactive biomolecular networks (Rinker S, Nat Nanotech 2010)

Molecular probe for single cell or molecule imaging (Lin C, Nat Chem 2012; Derr, Science 2012; Acuna
GP, Science 2012)

Generation of artificially synthesized new molecule (Langecker, Science 2012)

Targeting transport system



Targeting Delivery System for Nanomedicine

Vol 459|7 May 2009 |doi:10.1038/nature07971 nature

Self-assembly of a nanoscale DNA box with a
controllable lid

Ebbe S. Andersen'*?, Mingdong Dong"**t, Morten M. Nielsen"2‘3, Kasper Jahn'?>, Ramesh Subramani'~
Wael Mamdouh'**, Monika M. Golas™®, Bjoern Sander®®, Holger Stark®’, Cristiano L. P. Oliveira™,
Jan Skov Pedersen®’, Victoria Birkedal®, Flemming Besenbacher'**, Kurt V. Gothelf'*’ & Jergen Kjems"*>

Mi3mpig

7,249 nt 2.000- |

Design:
H, 42; W, 36; L, 36 nm
snm  EXperimental data:
H, 46+/- 2; W, 38 +/- 1; L, 30+/- 1 nm

-0 nm

Closed form Open form



B-Lockl
D-Lockl

Keyl

B-Lock2
D-Lock2

Key2

Principle of key lock system

' =BOX-GGCAGCTCGACTGATG-3"
' -BOX-CCGTCGAGCTGACTACGCTGACGT-5"

5'=GGCAGCTCGACTGATGCGACTGCA=3"

'=-BOX-TTCTAGGCATCGTAAG-3"
'=BOX-AAGATCCGTAGCATTCCATCATGG-5"

5"'=TTCTAGGCATCGTAAGGTAGTACC=3"

Sarand ¢
rrason

Beanck
m.g-aulm ¢ + N
D——i;xsi——b

Initial biding with 8-nt initiates branch
migration that removes Lock strand and
add key strand with complete

complement



Dynamic control and programmability of the box lid

FRET measurement

—— Before key
— After key

Fluorescence intensity (a.u.)

900

Box with unlinked faces

800+
700+
600
5004
400+
300+
200+
100+

Cy5

Wavelength (nm)

1] T T T T . | -
FPELLSL L LSS A

Box with linked faces
—— Unrelated seq.

—— Related seq.

140 T T T T T T T T

1207 Kinetics

0.75

] 050

207

. ———

}@@@@6@@@}\'&&«@”50 500 1:.:‘;‘.' 1500 2,000

Wavelength (nm)

Response - ca. 40s



Discussion

The application of ‘nanorobotic’ device could be restricted to:
1) transport of material in or out of the box in a controlled fashion

2) packing of biological active component as enzymes to control access to their relevant

substrates

3) delivery of hazardous drug or diagnostic sensor to specifically target tissue or cell



1)

2)
3)

4)
5)
6)

Potential application for Biology

NMR structure determination (Douglas SM, PNAS 2007)

membrane proteins are encoded by 20-35% but represent only <1% known protein structure

Study of interactive biomolecular networks (Rinker S, Nat Nanotech 2010)

Molecular probe for single cell or molecule imaging (Lin C, Nat Chem 2012; Derr, Science 2012; Acuna

GP, Science 2012)

Generation of artificially synthesized new molecule (Langecker, Science 2012)

Targeting transport system

In vivo cloning of nanostructure (Lin C, PNAS 2008)
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®¢® cadnano
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Leveraging the 3D Visualization power of Autodesk Maya, cadnano
provides a realistic and responsive 30 view

cadnano simplifies and enhances the process of
designing three-dimensional DNA origami
nanostructures. Through its user-friendly 2D and 3D
interfaces it accelerates the creation of arbitrary
designs. The embedded rules within cadnano paired
with the finite element analysis performed by cando,
provide relative certainty of the stability of the
structures.

I EEFRNEGE N

cadnano features:

» Platform independent (tested in Windows, ©SX and Linux)
» \isual cues aid design process for stable structures

= 3D interface powered by Autodesk Maya®

= Open architecture for plug-in creation

» Free and open source (MIT license)

latest screenshots (click here for more)
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Thank youl!
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