Novel computational methods to
spatially map single-cell RNA-seq data
to complex tissues
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Why study spatial heterogeneity In
organisms
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« Understanding the biological significance of complex
cellular and tissue heterogeneity.

« Spatial context of gene expression information for cells is
important for knowledge of cellular fates and function in health
and disease.

* Understanding signaling networks
* Developmental biology

Wang et al. Nat. Genet. (2013); The Cancer Genome Atlas Network, Nature (2012)



Existing approaches to study
cellular heterogenelty in organisms

Staining methods: In situ hybridization (ISH):
+ Allows gene expression to be assayed in many cells
- Limited to small number of transcripts/genes

- Marker analysis can localize only a handful of genes simultaneously within tissue
section

Genomic profiling: RNA sequencing (RNA-seq):

+ Full transcriptome profiling

+ Single-cell resolution (scRNA-seq)

+ Global insight into cellular function, state and heterogeneity

- No spatial resolution—> lack info about cells’ environment and localization

Additional general drawbacks:
» Selection bias: Rely on small set of predefined markers & cell purification
o Tissue processing > loss of signal



Existing experimental approaches for
spatially resolved RNA-seq

Mat Methods. 2014 Feb;11(2):190-&. doi: 10.1038/nmeth.2804. Epub 2014 Jan 12.

Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue.
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Highly multiplexed subcellular RNA sequencing in situ.
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Existing experimental approaches for
spatially resolved RNA-seq

Mat Methods. 2014 Feb;11(2):190-8. doi: 10.1038/nmeth.2804. Epub 2014 Jan 12

Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue.

Lovatt D', Buble BKZ, Lee J? Dueck H*, Kim TK?, Fisher S* Francis C*, Spaethling JW?, Wolf JAS, Grady MSS, Ulyanova AVE, Yeldell SBF, Griepenburg JCF,
Buckley PT?, Kim J7, Sul JY*, Dmochowski 1J?, Eberwing J&.

Transcriptome in vivo analysis (TIVA): Photoactivatable TIVA tag enabling mRNA capture from single cells
in live tissue, followed by RNA-seq.

+ Noninvasive approach for capturing mRNA from live single cells in their natural microenvironment.
+ Unambiguous determination of cells’ spatial origin.

- Limited throughput: manual photoactivation and cell picking.

- Tag may exhibit selectivity to certain cell types.

Cell cytosol

)
Load into cells @fﬂ . Plpeﬁe TIVA
1o o A D) oo Load tissue Phelosaivalo FIRET tissue tag-mRNA
& ) single cell validation collection isolation I:.
Photoactivate -
_- - W
S = T
B, - ﬁ?@m e P by Etes
26 R . ke NM > e _S-*":'iq: + | e _):\‘_'#{: > Normalized reads
Q&< T Ty S (log,)
*®
l lAnneaI to mRNA

mRNA elution and
transcriptomics

TR poty (AR ARRAA(A] 200) 181

Lyse tissue and affinity-
purify TIVA tag-mRNA hybrids

| Neuronal
markers

Glial,

[ progenitor

or vascular
markers




Existing experimental approaches for
spatially resolved RNA-seq

Science. 2014 Mar 21;343(6177)1360-3. doi: 10.1126/cience. 1250212, Epub 2014 Feb 27.

Highly multiplexed subcellular RNA sequencing in situ.

Les JH' Daugharthy ER, Scheiman J, Kalhor B, ¥ang JL, Ferrante TC, Termry R, Jeanty S5, Li C, Amamoto B, Peters DT, Turczyk BM, Marblestone AH, Inverso
SA, Bernard A, Mali P, Rios X, Aach J, Church Gi.

Fluorescent in situ RNA-seq (FISSEQ): tagging RNA with random hexamers and carrying out RNA-seq in
fixed cells.

+ Applicable to large variety of systems.
+ Reliable for analysis of small samples.

- Suboptimal for sampling larger tissues. 7 e R S l]
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Existing approaches for spatially resolved
RNA-seq

TIVA & FISSEQ:

+ Unambiguous determination of cells’ spatial origin.
- Applicable to variety of systems.

- Limited throughput/suboptimal for large tissues

Additional general drawbacks:

- Require highly specialized experimental tools.

- Do not yet offer widespread applicability of established scRNA-seq protocols.
- Currently of lower molecular sensitivity than scRNA-seq.

Computational approaches such as Principal Component Analysis (PCA): used to
emphasize variation and bring out strong patterns in a dataset and partially recover spatial
structure of tissues from single cell databases

+ Valuable for identification & characterization of cell types in mixed population.

- Give only very broad overview of spatial organization of assayed cells.

- Not well suited for spatially resolving novel cell types.



Spatial reconstruction of single-cell gene
expression data

Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier & Aviv Regev

Affiliations | Contributions | Corresponding authors

Nature Biotechnology 33, 495-502 (2013) | doi:10.1038/nbt. 3192

—> Seurat: computational model that infers cellular localization by
integrating scRNA-seq data with in situ RNA patterns



Seurat maps cells to their location by
comparing the expression level of
genes measured by scRNA-seq to
their expression level in a tissue
measured by ISH.

Model inputs:

I scRNA-seq data from
dissociated cells

. ISH patterns for a small
number of landmark genes

- Subdivision of the tissue of
interest into discrete spatial
domains (‘bins’)

- Landmark genes defined as ‘on’
or ‘off’ in each bin, as
determined from published in
situ stainings.

- Seurat then uses the single-
cell expression levels of the
landmark genes to determine
in which bins a cell likely
originated.
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Application

e Applied to widely studied zebrafish embryo at
the late blastula stage

« Extensive In situ patterns studied

* Applying Seurat to a data set of 851
dissociated single cells from zebrafish
embryos - confirmed the method's accuracy
and used it to predict and validate patterns
where In situ data were not available and
correctly localized rare cell population



Workflow

1. scRNA-seq of 851 cells in developing zebrafish embryo.
2. Reference map constructed from colorigenic in situ data for 47 genes.
3. Run Seurat to determine cells’ most probable localization in tissue of origin.
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Building spatial reference map

* Binary In situ land mark expression
reference map from published data sets

 Variability in published data sets




Validation: Spatial reconstruction of
single-cell expression data

Cells from entire tissue

Seurat maps cells throughout the embryo,
consistent with the random distribution of
the tissue

Seurat mapped majority of cells to 1-2
bins with high confidence (p>0.9), (24%
for a single bin, 59% for two bins, which
are typically adjacent).

Control 1 (cells experimentally enriched
for embryonic margin): Seurat’s inferred
locations overlapped considerably with the
experimentally enriched area
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Re-inferred in situ pattern of landmark

Validation: Spatial reconstruction of

single-cell expression data

genes:

Inferred patterns demonstrated
remarkably high overlap with
experimental data (median ROC
= 0.96)

12 / 47 genes exhibiting near-
perfect classification (ROC >
0.98).

A rare subset of genes apparently
performed poorly (e.g., chd) -2
literature revealed these genes
had highly variable published in
Situ patterns.

dmp dxd hd osrl 3 szl
3 N =Y a
_E =3 B EEm——
m
2 - B e
o 3
oo
Q2
E % 0.966 0.952 0.774 0.979 0.993 0.979
g 1.0
0.8
o
& I
g 0.6 (]
W admp W osr?
b 047 Wcdxd W sox3
= W chd W sz
0.2 ||
0-

L] 1 1 L] I T
0 0.2 0.4 0.6 0.8 1.0
False-positive rate



Seurat works even for genes with
unknown expression patterns

Validation by RNA ISH of 14 genes without published expression patterns:

- Experimentally determined in situ expression patterns exhibited overall high accordance with Seurat’s predicted

patterns
- Seurat can correctly transform scRNA-seq data into spatial predictions for genes whose expression patterns
are not known
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Spatially diverse landmark genes improve
Seurat’s mapping

o Stabilization of spatial mapping with inclusion of 230 landmark genes.

 Best when genes were sampled across all nine archetypes: spatially diverse
landmark genes improve Seurat’s mapping power.

* Having 2 genes with overlapping spatial expression patterns is valuable,
additional redundancy has diminishing returns.
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Seurat correctly localizes rare cell
populations
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Seurat discovers markers of rare
subpopulations

« Used Seurat’s spatial inferences in a spatially aware marker selection strategy (to avoid
identifying boarder, nonspecific markers of the embryonic margin).

- Successfully rediscovered multiple well- characterized prechordal plate progenitor markers and
also found candidate markers that were not previously annotated in the prechordal plate,
including ripplyl and ptfla.

ISH to validate new marker gene:

-> In situ hybridization for ripplyl agreed with Seurat’s prediction,

- ripplyl/gsc double in situ hybridization showed that ripplyl is expressed only in a subset of gsc-
expressing cells.

- ripplylis a bona fide marker of the prechordal plate progenitors at 50% epiboly

- Spatially aware approach discovers markers of rare subpopulations.
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Seurat identifies dispersed, rare
cell populations

e  Searched for potentially novel subpopulations present in RNAseq data set > 12 cells expressing genes
hallmark of apoptosis, cellular stress and cell signaling.

»  Seurat mapping: Apoptotic-like cells scattered throughout developing embryo, originating more frequently
toward animal and ventral poles

* Not an artifact: cells identified in 10 separate embryos and in each experimental batch
*  Number and specific locations different for each embryo, consistent with stochastic localization.
* In situ analysis for foxo3b, aplnrb and isg15 interdependently confirmed their individual scattered expression.

-> Identification of previously uncharacterized and stochastically localized population of “stressed cells”.
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Summary: Evaluation of Seurat’s
performance

« Seurat can transform scRNA-seq data into spatial predictions
for both genes with known and unknown expression patterns

* Discovers markers for rare populations
» ldentifies dispersed, rare cell populations

Limitations

« Seurat relies on the spatial segregation of gene expression
patterns in a tissue in order to construct a reference map

- may be challenging to apply it to tissues such as tumors
where there is no guarantee of reproducible spatial patterning, or
to tissues where cells with highly similar expression patterns are
spatially scattered across a tissue (e.g., the adult retina).



High-throughput spatial mapping of single-cell RNA-
seq data to tissue of origin

Kaia Achim, Jean-Baptiste Pettit, Luis R Saraiva, Daria Gavriouchkina, Tomas Larsson,

Detlev Arendt & John € Marioni
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Overview

 Approach: combines previously generated
ISH-based gene expression atlases with
unbiased single-cell transcriptomics

 Distinct cell types can be determined
solely by expression of a few highly
expressed transcription factors

* Applicable to any system with a reference
gene expression database (RNA RISH
data) of sufficiently high resolution
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Table 1 List of existing ISH atlases

Species Tissue Database Resolution (ISH)  Number of genes (ISH)

Mouse Brain http:// e.brain-map.org/ Region (0.008 mm3) ~20,0002
Prenatal brain pingmouse.brain-map.org/ Region (fine) ~-2,000
Developing embryo (E14.5) Region (fine) 16,193

Chicken Developing embryo, p:/igeisha.arizona.edu/ Region 4,072
various stages

Xenopus laevis Whole animal, various stages p:/fwww.xenbase.org/ Region (broad) 3600

Drosophila melanogaster Whole animal, various stages Region (broad) 7,808

Cell 95

Caenorhabditis elegans Whole animal, various stages )/ Cell, cell group 3,363

Arabidopsis thaliana Root http:/fwww.arexdb.org/ Cell 20,872¢

MNon-model species

Human Brain http://human.brain-map.org/ Selected regions ~1,000

Zebra finch Brain http:/fwww.zebrafinchatlas.org/ Region (fine) 187

C. intestinalis Whole animal, various stages http://'www.aniseed.cnrs.fr/anisead/ Region (fine, broad) up to 2,600

Marine invertebrates, 21 species Whale animal, various stages http://www.kahikai.org/index.php?content=genes  Region (broad) 306

P dumerilii Developing brain Tomer et al,, 2010 (ref. 14); Pettit et al, 2014 (ref. 17)  Subcellular® 168

Gene expression atlas = binarized - matrix of n positions
that each comprise presence and absence values (1 or O,
respectively) for m genes.

For each sequenced cell ¢, expression data for same set of
m genes is compared to expression profiles at all n
positions in the reference matrix and matched based on
highest similarity.

Table: ISH atlases exist for many species and
developmental stages - broadly applicable.

Can also use targeted ISH of marker gene screens as a
mapping reference for RNA-seq data.



Application

« Gene expression patterns in developing brain of marine
annelid, P. dumerilii.

e P. dumerilii Is an important model system for studying
bilaterian brain evolution.

e At 48h post-fertilization (hpf), the P. dumerilii larval brain is
composed of a relatively low number of cells (~2,000)

— Wide range of cell types (several types of differentiated neurons,
sensory cells and proliferating progenitor cells).

— Previously, whole-mount in situ hybridization (WMISH) was used
to study the expression pattern of 169 differentially expressed
candidate genes such as transcription factors, regulators of cell
fate and body plan patterning, within the brain of P. dumerilii,

—> Facilitating the creation of a WMISH expression atlas



P. dumerilii larval brains
(at 48hpf)
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Computational
model:

1. Calculated a
specificity score -
convert score vector
such that elements
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and 1- transformed
specificity score

2. Determined a
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score for each cell-
voxel combinations

3. Determine
significance of the
cell-voxel
correspondence scores
using simulations 2>
determined empirical
probability




Mapping individual cells to precise,
single location

Mapping results:

. Established likely location for 91% of cells
in data set.

. Could map back majority (83%) of
sequenced cells to a precise, single
location

. Set of voxels to which each cell is
mapped back are typically arranged in
small, bilaterally symmetric and spatially
coherent groups (Fig. a-b”)

Broad mapping domains (ex. Fig. c):

. Indicative of relative molecular
homogeneity of respective brain regions

. Augmenting reference atlas with genes
that display variable patterns of
expression should improve precision of

mapping.

Effect of size of reference atlas on

mapping:

. Fraction of cells mapped back with
medium & high confidence increased as a
function of the number of reference genes

Only ~50-100 genes with spatially distinct
patterns of expression needed to map
cells to specific location with high degree
of confidence
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Mapping validation & associated challenges

Co-expression analysis for genes that were co-expressed in scRNA-seq data but not represented in the binarized

ISH dataset:

Ex.: Overlaying averaged, non-binarized ISH images revealed areas of co-expression:
Averaged gene expression Averaged gene expression Mapping result

C2x41.1L

C2x41.1L

23 (16/7) Low confid.

Ex.: Overlaying averaged, non-binarized ISH images revealed larger overlap of genes:

Top specific ref. genes

Mapping result  binarized (overlap in red) WMISH (overlap in white)
Averaged ISH| h Averaged ISH

Qverlay

C2x46.1L

Averaged ISHJ | Double ISH

C4x59.18

high conf 88 (60/28)

Averaged ISH| n ‘Double ISH

C4x38.1S

Ex.: Mismatch not explained by overlaying = Dual ISH confirms colocalization:

Averaged gene expression Dual ISH Mapping result

- =, C4x38.1S
~

1. Reference matrix used averaged expression patterns

- Averaging & binarization of ISH images can lead
to loss of information - false ‘presence’ &
‘absence’ calls in binarized reference spatial matrix

- Altering binarization threshold can overcome this
problem and improve the reference.

2. Imperfections in ISH database
- Misannotation of gene expression value

3. Technical noise in scRNA-seq —> bias for particular
genes (ex.: = erroneously high specificity score)

Conclusion: Approach robust to technical challenges




Validation using reference-
Independent marker genes

Removed gene from reference matrix
and compared the mapping results with
those generated with the full reference.

Mapping successful = statistically
significant overlap between voxels to
which it was mapped back and the
expression domain of the selected
marker gene.

Results:

14/17 cells displayed concordant results
with both references

1/17: marginally sig. when full reference
used, statistically insig. overlap when
using reduced reference

2/17: no mapping back to loci when
using reduced reference (retrospectively
found respective gene weakly
expressed)

Approach provides a tool for identifying
genes co-expressed with known
markers, thus revealing new biological
insights.
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ldentifying genes co-expressed
with known markers

Registered new WMISH mapping result Ref. genes Ref. gene + new markers
patterns for 3 genes (Ten3,
Cux1/2, Fezf) expressed in
subset of cells in scRNA-seq
dataset, then assess spatial

mapping
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Summary

Developed a computational approach that combines a spatially referenced ISH atlas with
single-cell transcriptome profiles generated using scRNA-seq to map each cell back to the
tissue under study.

Profiling ~7% cells in P. dumerilii brain (randomly distributed throughout tissue of interest),
81% of cells were mapped back to a relatively precise location.

Validated results computationally & using ISH
Does not require a priori cell labeling (unlike TIVA)

Can assay cells from across relatively large tissue simultaneously (unlike FISSEQ)
High throughput in contrast to TIVA & FISSEQ

Broadly applicable in contrast to FISSEQ

Can be used to identify new tissue-specific genes

Spatial origin of cells assayed by TIVA & FISSEQ can be determined unambiguously

Approach depends critically on the quality (resolution, accuracy & information content) of
the reference atlas and scRNA-seq data

Even without a cellular resolution reference ISH atlas (majority of cases), cells can be
mapped back to small and restricted spatial domains using this approach



Conclusion & Outlook

« Two computational models to accurately map location of
Individual cells in complex tissue

* |dentify expression patterns
* Localize rare cell population and identify novel markers

o Extract valuable information from existing data sets &
databases (scRNA-seq; ISH)

Outlook

* Produce a high-quality spatial map of a tissue:

— Standard techniques could suggest the most relevant landmark
genes to establish a preliminary input spatial map

— Generate an unbiased spatial reference map with emerging

techniques that perform low-input RNA-seq on cryosections (eg
RNA tomography).



Thank you for your attention
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