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Why study spatial heterogeneity in 
organisms 

• Understanding the biological significance of complex 
cellular and tissue heterogeneity.  

• Spatial context of gene expression information for cells is 
important for knowledge of cellular fates and function in health 
and disease. 

• Understanding signaling networks 
• Developmental biology 

 
 

Wang et al. Nat. Genet. (2013); The Cancer Genome Atlas Network, Nature (2012) 
 



Staining methods: In situ hybridization (ISH): 
+ Allows gene expression to be assayed in many cells  
- Limited to small number of transcripts/genes 
- Marker analysis can localize only a handful of genes simultaneously within tissue 

section 
 
Genomic profiling: RNA sequencing (RNA-seq):  
+ Full transcriptome profiling  
+ Single-cell resolution (scRNA-seq) 
+ Global insight into cellular function, state and heterogeneity 
- No spatial resolution lack info about cells’ environment and localization 
 
Additional general drawbacks: 
• Selection bias: Rely on small set of predefined markers & cell purification 
• Tissue processing  loss of signal 

Existing approaches to study 
cellular heterogeneity in organisms 



Existing experimental approaches for 
spatially resolved RNA-seq 

 



Existing experimental approaches for 
spatially resolved RNA-seq 

 

Transcriptome in vivo analysis (TIVA): Photoactivatable TIVA tag enabling mRNA capture from single cells 
in live tissue, followed by RNA-seq. 
+ Noninvasive approach for capturing mRNA from live single cells in their natural microenvironment. 
+ Unambiguous determination of cells’ spatial origin. 
- Limited throughput: manual photoactivation and cell picking. 
- Tag may exhibit selectivity to certain cell types. 

 



Existing experimental approaches for 
spatially resolved RNA-seq 

 

Fluorescent in situ RNA-seq (FISSEQ): tagging RNA with random hexamers and carrying out RNA-seq in 
fixed cells. 

+ Applicable to large variety of systems. 
+ Reliable for analysis of small samples. 
- Suboptimal for sampling larger tissues. 
- Only cells present in same plane & close proximity can be 

assayed simultaneously. 
 



Existing approaches for spatially resolved 
RNA-seq 

 TIVA & FISSEQ: 
+ Unambiguous determination of cells’ spatial origin. 
- Applicable to variety of systems. 
- Limited throughput/suboptimal for large tissues 
 
Additional general drawbacks: 
- Require highly specialized experimental tools. 
- Do not yet offer widespread applicability of established scRNA-seq protocols. 
- Currently of lower molecular sensitivity than scRNA-seq. 
 
 
 
Computational approaches such as Principal Component Analysis (PCA): used to 
emphasize variation and bring out strong patterns in a dataset and partially recover spatial 
structure of tissues from single cell databases 
+ Valuable for identification & characterization of cell types in mixed population. 
- Give only very broad overview of spatial organization of assayed cells. 
- Not well suited for spatially resolving novel cell types. 
 

 
 



 Seurat: computational model that infers cellular localization by 
integrating scRNA-seq data with in situ RNA patterns 



Seurat Seurat maps cells to their location by 
comparing the expression level of 
genes measured by scRNA-seq to 
their expression level in a tissue 
measured by ISH. 
 
Model inputs:  
i. scRNA-seq data from 

dissociated cells 
ii. ISH patterns for a small 

number of landmark genes 
 Subdivision of the tissue of 

interest into discrete spatial 
domains (‘bins’) 

 Landmark genes defined as ‘on’ 
or ‘off’ in each bin, as 
determined from published in 
situ stainings. 
 

 Seurat then uses the single-
cell expression levels of the 
landmark genes to determine 
in which bins a cell likely 
originated. 



Application 

• Applied to widely studied zebrafish embryo at 
the late blastula stage 

• Extensive in situ patterns studied 
• Applying Seurat to a data set of 851 

dissociated single cells from zebrafish 
embryos  confirmed the method's accuracy 
and used it to predict and validate patterns 
where in situ data were not available and 
correctly localized rare cell population 
 



Workflow 
1. scRNA-seq of 851 cells in developing zebrafish embryo. 
2. Reference map constructed from colorigenic in situ data for 47 genes. 
3. Run Seurat to determine cells’ most probable localization in tissue of origin. 

Controls:  
• Cell seq. from biased dissociation 

protocol (enriches for embryonic margin 
cells).  

• Cell seq. from manual isolation. 
 



Building spatial reference map 
• Binary in situ land mark expression 

reference map from published data sets 
• Variability in published data sets 



Validation: Spatial reconstruction of 
single-cell expression data 

• Seurat maps cells throughout the embryo,  
consistent with the random distribution of 
the tissue 

• Seurat mapped majority of cells to 1-2 
bins with high confidence (p>0.9), (24% 
for a single bin, 59% for two bins, which 
are typically adjacent).  
 

• Control 1 (cells experimentally enriched 
for embryonic margin): Seurat’s inferred 
locations overlapped considerably with the 
experimentally enriched area 

 
• Control 2 (manually isolated cells from 

intact embryos):  
– Seurat’s inferred location within one 

bin of the registered location 
– Median distance error is 2 bins 

Cells from entire tissue 

Cells from biased sampling 
(depleted for animal cap) 



Validation: Spatial reconstruction of 
single-cell expression data 

Re-inferred in situ pattern of landmark 
genes: 
• Inferred patterns demonstrated 

remarkably high overlap with 
experimental data (median ROC 
= 0.96) 

• 12 / 47 genes exhibiting near- 
perfect classification (ROC > 
0.98).  

• A rare subset of genes apparently 
performed poorly (e.g., chd)  
literature revealed these genes 
had highly variable published in 
situ patterns. 



Seurat works even for genes with 
unknown expression patterns  

Validation by RNA ISH of 14 genes without published expression patterns: 
 
 Experimentally determined in situ expression patterns exhibited overall high accordance with Seurat’s predicted 

patterns 
 Seurat can correctly transform scRNA-seq data into spatial predictions for genes whose expression patterns 

are not known 



Spatially diverse landmark genes improve 
Seurat’s mapping 

• Stabilization of spatial mapping with inclusion of ≥30 landmark genes. 
• Best when genes were sampled across all nine archetypes: spatially diverse 

landmark genes improve Seurat’s mapping power. 
• Having 2 genes with overlapping spatial expression patterns is valuable, 

additional redundancy has diminishing returns. 



Seurat correctly localizes rare cell 
populations 

• 10 cells characterized by strong expression of the 
prechordal plate markers (gsc and frzb)  Seurat 
correctly mapped cells to dorsal-most embryonic 
margin. 

• 19 putative endodermal progenitors defined by high 
expression levels of sox32, cxcr4a and gata5  Seurat 
scattered the endodermal progenitors across the 
lowest tier of the embryonic margin  

 
• PGC cells (~1 per 500 cells in embryo)  Identified 

one cell that expressed extremely high levels of the 
canonical PGC markers ddx4/vasa, nanos3, and dnd1 
 Seurat mapped this cell to a mid-margin location, 
consistent with the distribution of these cells at this 
stage. 

 
 Seurat successfully characterized the spatial 

distribution of known rare subpopulations with 
different characteristic localizations.  

 
 

Green: Prechordal plate progenitors; Blue: Endodermal progenitors; Primordial germ cells (PGC)  
 



Seurat discovers markers of rare 
subpopulations 

• Used Seurat’s spatial inferences in a spatially aware marker selection strategy (to avoid 
identifying boarder, nonspecific markers of the embryonic margin). 

 Successfully rediscovered multiple well- characterized prechordal plate progenitor markers and 
also found candidate markers that were not previously annotated in the prechordal plate, 
including ripply1 and ptf1a. 

 
ISH to validate new marker gene: 
 In situ hybridization for ripply1 agreed with Seurat’s prediction,  
 ripply1/gsc double in situ hybridization showed that ripply1 is expressed only in a subset of gsc-

expressing cells. 
 ripply1 is a bona fide marker of the prechordal plate progenitors at 50% epiboly 
 
 Spatially aware approach discovers markers of rare subpopulations.  



Seurat identifies dispersed, rare 
cell populations 

• Searched for potentially novel subpopulations present in RNAseq data set  12 cells expressing genes 
hallmark of apoptosis, cellular stress and cell signaling. 

• Seurat mapping: Apoptotic-like cells scattered throughout developing embryo, originating more frequently 
toward animal and ventral poles 

• Not an artifact: cells identified in 10 separate embryos and in each experimental batch 
• Number and specific locations different for each embryo, consistent with stochastic localization. 
• In situ analysis for foxo3b, aplnrb and isg15 interdependently confirmed their individual scattered expression. 
 
 Identification of previously uncharacterized and stochastically localized population of “stressed cells”. 



Summary: Evaluation of Seurat’s 
performance 

• Seurat can transform scRNA-seq data into spatial predictions 
for both genes with known and unknown expression patterns 

• Discovers markers for rare populations 
• Identifies dispersed, rare cell populations 
 
Limitations 
• Seurat relies on the spatial segregation of gene expression 

patterns in a tissue in order to construct a reference map  
 may be challenging to apply it to tissues such as tumors 
where there is no guarantee of reproducible spatial patterning, or 
to tissues where cells with highly similar expression patterns are 
spatially scattered across a tissue (e.g., the adult retina). 

 
 



 



Overview 

• Approach:  combines previously generated 
ISH-based gene expression atlases with 
unbiased single-cell transcriptomics 

• Distinct cell types can be determined 
solely by expression of a few highly 
expressed transcription factors  

• Applicable to any system with a reference 
gene expression database (RNA RISH 
data) of sufficiently high resolution 



Spatial mapping approach 

• Gene expression atlas  binarized  matrix of n positions 
that each comprise presence and absence values (1 or 0, 
respectively) for m genes. 

• For each sequenced cell c, expression data for same set of 
m genes is compared to expression profiles at all n 
positions in the reference matrix and matched based on 
highest similarity. 

 
• Table: ISH atlases exist for many species and 

developmental stages  broadly applicable. 
• Can also use targeted ISH of marker gene screens as a 

mapping reference for RNA-seq data. 



Application 
• Gene expression patterns in developing brain of marine 

annelid, P. dumerilii. 
• P. dumerilii is an important model system for studying 

bilaterian brain evolution. 
 
• At 48h post-fertilization (hpf), the P. dumerilii larval brain is 

composed of a relatively low number of cells (~2,000) 
– Wide range of cell types (several types of differentiated neurons, 

sensory cells and proliferating progenitor cells).  
– Previously, whole-mount in situ hybridization (WMISH) was used 

to study the expression pattern of 169 differentially expressed 
candidate genes such as transcription factors, regulators of cell 
fate and body plan patterning, within the brain of P. dumerilii,  

 Facilitating the creation of a WMISH expression atlas 



Work flow 

Mapped 139 
high-quality 
filtered cells’ 
sequencing 
reads to P. 
dumerilii 
reference 
transcriptome 
(using bowtie2) 

Dissociation, 
cell capture, 
lysis, RT, cDNA 
amplification, 
next generation 
sequencing 

P. dumerilii larval brains 
(at 48hpf) 

Spatial 
mapping:  
- 169 genes 
included in 
reference ISH 
databases 
- Removed genes 
with low-quality 
ISH signals 
 reduced 
reference set of 
72 genes 
 

ISH data set 
divided into 
3um3 voxels & 
binarized  
matrix 

Computational 
model: 
 
1. Calculated a 
specificity score  
convert score vector 
such that elements 
take values between 0 
and 1 transformed 
specificity score 
 
2. Determined a 
correspondence 
score for each cell-
voxel combinations 
 
3. Determine 
significance of the 
cell-voxel 
correspondence scores 
using simulations  
determined empirical 
probability 



Mapping individual cells to precise,  
single location 

Mapping results: 
• Established likely location for 91% of cells 

in data set. 
• Could map back majority (83%)  of 

sequenced cells to a precise, single 
location  

• Set of voxels to which each cell is 
mapped back are typically arranged in 
small, bilaterally symmetric and spatially 
coherent groups (Fig. a-b”) 

 
Broad mapping domains (ex. Fig. c): 
• Indicative of relative molecular 

homogeneity of respective brain regions  
• Augmenting reference atlas with genes 

that display variable patterns of 
expression should improve precision of 
mapping.  
 

Effect of size of reference atlas on 
mapping:  
• Fraction of cells mapped back with 

medium & high confidence increased as a 
function of the number of reference genes 

 Only ~50-100 genes with spatially distinct 
patterns of expression needed to map 
cells to specific location with high degree 
of confidence 

Broad mapping  
 
(> 500 voxels) 
= 4% of seq. cells 
  

Single-cell 
precision mapping 
(<150 voxels) 
= 83% of seq. cells 

Cell mapping to 
small brain region  
(150-500 voxels) 
= 13% of seq. cells 
 



Mapping validation & associated challenges 

1. Reference matrix used averaged expression patterns  
 Averaging & binarization of ISH images can lead 

to loss of information  false ‘presence’ & 
‘absence’ calls in binarized reference spatial matrix 

 Altering binarization threshold can overcome this 
problem and improve the reference.  

 
2. Imperfections in ISH database 
 Misannotation of gene expression value 
 
3. Technical noise in scRNA-seq  bias for particular 

genes (ex.:  erroneously high specificity score) 
 
Conclusion: Approach robust to technical challenges 

Ex.: Overlaying averaged, non-binarized ISH images revealed areas of co-expression: Ex.: Mismatch not explained by overlaying  Dual ISH confirms colocalization: 

Ex.: Overlaying averaged, non-binarized ISH images revealed larger overlap of genes: 

Co-expression analysis for genes that were co-expressed in scRNA-seq data but not represented in the binarized 
ISH dataset: 



Validation using reference-
independent marker genes 

• Removed gene from reference matrix 
and compared the mapping results with 
those generated with the full reference. 

• Mapping successful = statistically 
significant overlap between voxels to 
which it was mapped back and the 
expression domain of the selected 
marker gene. 

Results: 
• 14/17 cells displayed concordant results 

with both references 
• 1/17: marginally sig. when full reference 

used, statistically insig. overlap when 
using reduced reference 

• 2/17: no mapping back to loci when 
using reduced reference (retrospectively 
found respective gene weakly 
expressed) 
 

 Approach provides a tool for identifying 
genes co-expressed with known 
markers, thus revealing new biological 
insights. 

  



Identifying genes co-expressed 
with known markers 

Registered new WMISH 
patterns for 3 genes (Ten3, 
Cux1/2, Fezf) expressed in 
subset of cells in scRNA-seq 
dataset, then assess spatial 
mapping 

 
 Ten3, Cux1/2, Fezf each 

co-expressed with known 
reference genes in the 
location indicated by 
spatial mapping 
 

 New marker genes 
identified from the scRNA-
seq experiment 
independently validated 
the spatial mapping and 
could be used to further 
refine the reference atlas 



Summary 
• Developed a computational approach that combines a spatially referenced ISH atlas with 

single-cell transcriptome profiles generated using scRNA-seq to map each cell back to the 
tissue under study. 

• Profiling ~7% cells in P. dumerilii brain (randomly distributed throughout tissue of interest), 
81% of cells were mapped back to a relatively precise location. 

• Validated results computationally & using ISH 
• Does not require a priori cell labeling (unlike TIVA) 
 
 
+ Can assay cells from across relatively large tissue simultaneously (unlike FISSEQ) 
+ High throughput in contrast to TIVA & FISSEQ 
+ Broadly applicable in contrast to FISSEQ 
+ Can be used to identify new tissue-specific genes 

 
- Spatial origin of cells assayed by TIVA & FISSEQ can be determined unambiguously 
- Approach depends critically on the quality (resolution, accuracy & information content) of 

the reference atlas and scRNA-seq data 
 

+ Even without a cellular resolution reference ISH atlas (majority of cases), cells can be 
mapped back to small and restricted spatial domains using this approach 



Conclusion & Outlook 
• Two computational models to accurately map location of 

individual cells in complex tissue 
• Identify expression patterns  
• Localize rare cell population and identify novel markers 
• Extract valuable information from existing data sets & 

databases (scRNA-seq; ISH) 
 
Outlook 
• Produce a high-quality spatial map of a tissue: 

– Standard techniques could suggest the most relevant landmark 
genes to establish a preliminary input spatial map  

– Generate an unbiased spatial reference map with emerging 
techniques that perform low-input RNA-seq on cryosections (eg 
RNA tomography).  

 



Thank you for your attention 
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