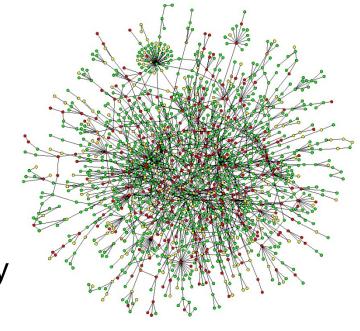
Parallel analysis of translated ORF (PLATO)

Technical Journal Club

16.04.2013

Mary-Aude Rochat, PhD student Speck group


Proteomics

Rationale: Increase in the DNA sequence information Understand biological processes

- >Development of Large scale analysis of protein:
- *Characterization of gene function
- *Building functional linkage
- *Insight into biological mechanisms
- >Protein-Protein interaction map

Methods: *Mass spectrometry

- *2-hybrid system
- *Phage display technology
- *Protein microarray

Previous methods:

Two-hybrid and split reporter

Procedure: Bait > Target protein fused to a DNA-BD

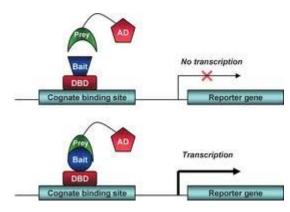
Prey> Protein fused to a transcription AD

Physical interaction

>transcription of reporter gene

Advantages:*Powerful, quick and easy *High-throughput

Limitations: *Not comprehensive


*False positive (50%)

*Membrane protein

(>split ubiquitin system)

*Only within a cell

>Not suitable for drug or ab target identification

Previous methods: Phage/Phagemid display of cDNA

<u>Procedure:</u> *Exogenous peptide expression (fusion: pIII or pVIII)

*Selection of phage (affinity purification: specific ligand) *Elution and amplification (E. coli)

*Sequencing

Advantage: Rapid generation of large librairies

Advantage Phagemid:*Larger foreign DNA fragment

*Efficient in transformation: High diversity

*MCS

*Genetically more stable than recombinant

phages

Limitations: *Small portion of the protein

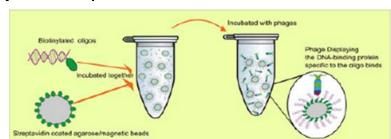
*Small fraction of in-frame polypeptide

>Low target cDNA in the initial library

>Highly biaised clonal abundancies

Previous methods: Phage/Phagemid display of cDNA

Improvement:*cDNA fragmentation


- >Increase the probability of expressing functional domain
- >Limited by the lack of post translational modification and folding capacity of the host

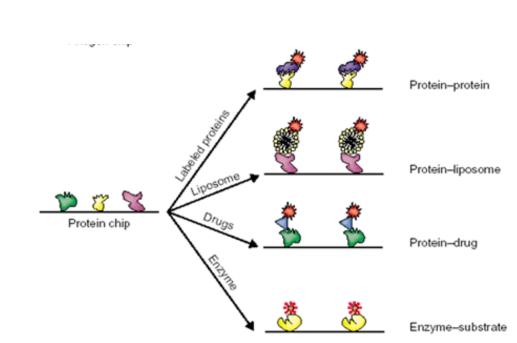
*Directional cloning

- >Priming of mRNA instead of cDNA (interference stop codons)
- >Maintain the native orientation of the fragment
- >Double the probability to obtain inserts with continuous ORFs

*ORF selection (ampicillin)

- >Improve the yield of full cDNA expression
- >Avoid premature stop codons

Previous methods: Protein microarray


<u>Detection:</u> Interaction between protein-lipid, drugs, enzymesubstrate and disease biomarkers

Procedure:-Baits bound on a support

- -Molecule of interest is tagged with a fluorescent dye
- -Detection by fluorescence
- >Pattern of +/-spots
- >Signal intensity is proportional

3 types of microarrays:

- -Analytical (capture array)
- -Functional protein
- -Reverse phase microarray (post-translational modification altered in disease)

Previous methods: Protein microarray

- Advantages: -High number of interacting partners
 - -Quantitative
 - -Rapid, automated, and highly sensitive
 - -Post translational modification
- Limitations: -In vitro assays
 - -Cross-reactive contaminants
 - -Denaturation
 - -Conjugaison with Tag

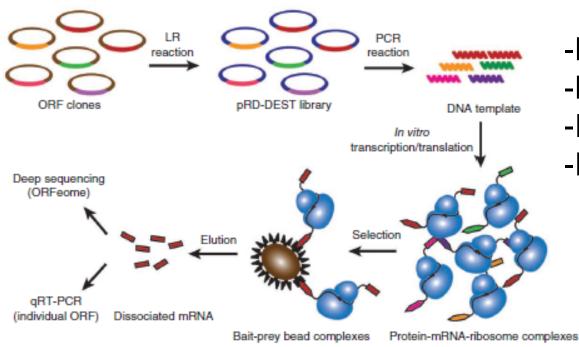
Protein Interaction discovery using parallel analysis of translated ORFs (PLATO)

Jian Zhu^{1-3,10}, H Benjamin Larman^{1-5,10}, Geng Gao^{1,3}, Romel Somwar⁶, Zijuan Zhang⁷, Uri Laserson^{2,4,8}, Alberto Ciccia¹⁻³, Natalya Pavlova¹⁻³, George Church^{2,4}, Wei Zhang⁷, Santosh Kesari⁹ & Stephen J Elledge¹⁻³

nature biotechnology

AIM

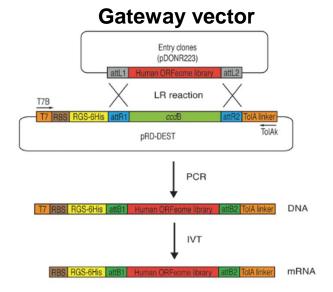
Identify physical interaction between proteins and others molecules


PLATO

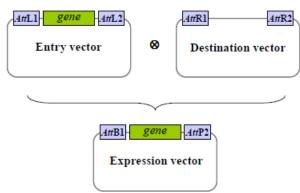
- Combine:
 - In vitro display of full length protein
 - High-throughput DNA sequencing

Confirmation on:

- LYN kinase
- Patients auto-antibodies
- Small molecules: Gefitinib


Method

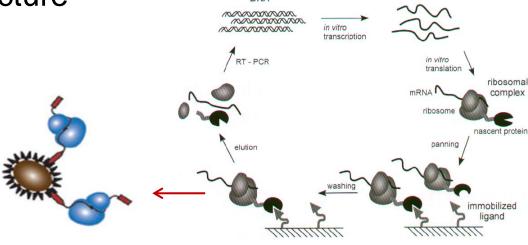
- -Human ORFeome library
- -LR reaction/superpools
- -Recombination (attL-attR)
- -PCR amplification


- -In vitro txp (T7)
- -In vitro translation (RTS)
- -Affinity purification
- -Elution/mRNA purification

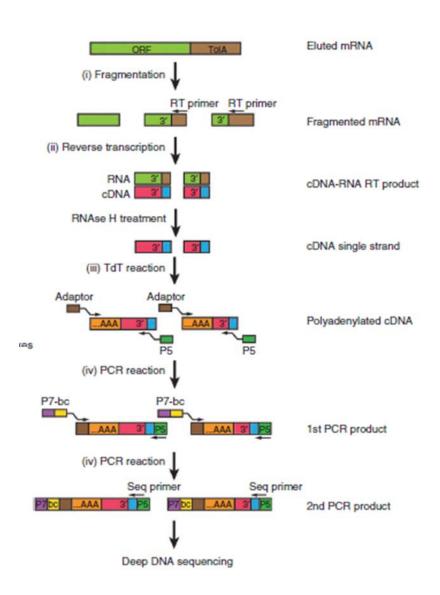
Ribosome display vector

Gateway cloning system

- -Commercialized cloning strategy
- -Based on DNA recombination mechanisms utilized by the phage Lambda for integration
- -Efficient transfer of DNA fragment: recombination sequence and clonase enzymes (BP and LR reaction)
- -Maintain the reading frame: specific sites
- >Allow functional analysis
- -Low background rates
- -No requirements on the sequence to be cloned
- -Large libraries of Gateway-adapted ORFs have been created by both academic and commercial entities

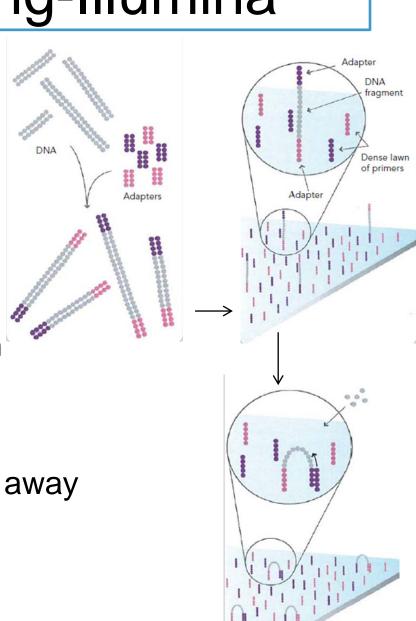


Method: ribosome display


In vitro translation: Physical coupling of polypeptide with mRNA

Procedure:

- >DNA of interest fused in frame with a spacer lacking stop codon
- >Chaperones
- >Stabilizing of the third structure
- >Elution


Method

- -Strategy for deep sequencing of enriched libraries
- -Recovery of the 3'termini of the ORF:
- >minimize RNA degradation >allow stochiometric correlation between barcode counts and transcripts abundance

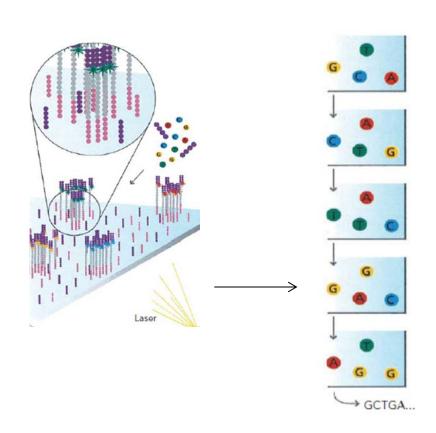
Deep sequencing-Illumina

- 3 steps: 1) Library preparation
- >Fragmentation of the DNA
- >Ligation adaptors P5, P7
- >DNA attach to oligont
 - 2) Bridge amplification
- >PCR using P5, P7 primers
- >Cluster of unique sequence
- >Reverse strand cleaved and wash away

Deep sequencing-Illumina

- 3)Sequencing
- >Fluorescent bases
- >Annealing
- >Fluorescence detection
- >Wash

Mapping of newly add nuclotide


Advantages:

Accessibility

Accuracy

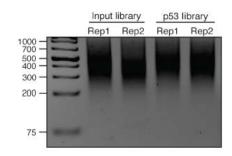
Ease of use

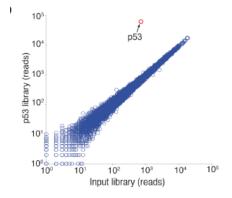
Problematic sequences

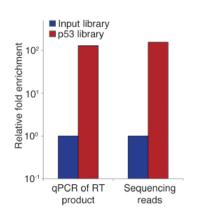
Deep sequencing

Preservation of mRNA from RT to deep sequencing

Analysis of unenriched library:


- >Libraries spiked with p53 mRNA (100x)
- >Agarose gel of the second PCR
- >Scatter plot of clone sequencing counts:


No p53 ORF are well correlated

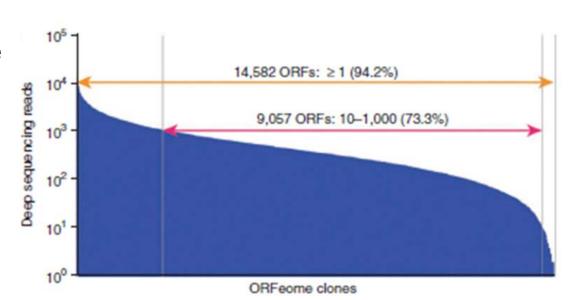

>RT-qPCR of p53

Results:

- -Reproducible
- -Quantitative

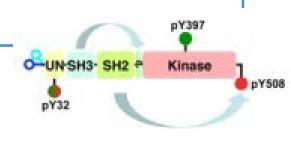
Deep Sequencing

Multiplex: Pool of multiple samples


Identification by barcode

Fast and cheap

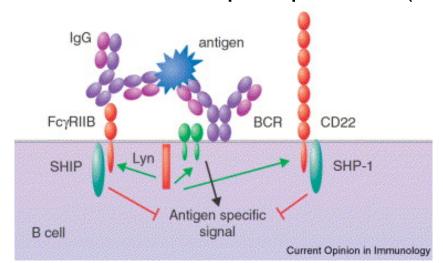
Single-end with custom primers (P5-attB2)


Sequencing reads of the unenriched human mRNA library

>Most ORF were sequenced at least once >14'582/15'483 (=94%)

LYN kinase

SRC family: >SH3, SH2, kinase domain
>2 isoforms

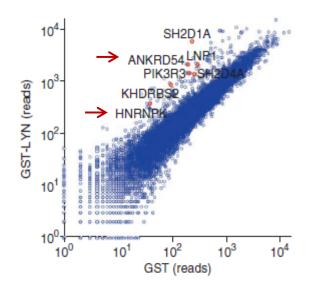


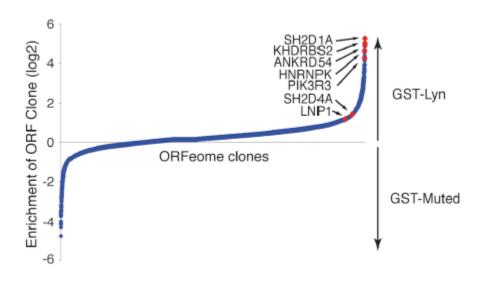
Expressed :myeloid, Bcells (hepatocytes, adipocytes)

Fonction: >Key signaling modulator of immune cell response >Dual function

>Activating> P of ITAM: activation of PLCγ2 and Pl3kinase

>Inhibition > P of ITIM: activation of phosphatase (SHIP-1, SHP-1)

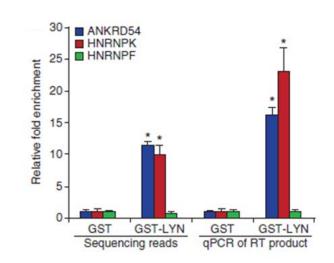

LYN kinase

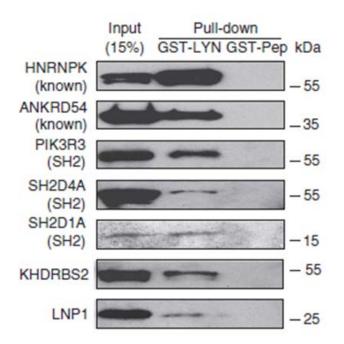

- Pathology: Autoimmunity, Leukemia

 Loss of inhibitory function, usually dominant
- >LYN^{-/-}: splenomegaly, myeloproliferation hyperactivity BCR > autoimmunity
 - > amplification loop
- >Bafetinib: inhibitor of LYN, clinical trials apoptosis in glioblastoma
- >Dasatinib: BCR-ABL/LYN kinase inhibitor
- >Need better understanding on the dual role of LYN kinase
 - *Interacting partners
 - *Inhibitors

LYN kinase-Interacting partners

- >Ability of PLATO to identify interacting partners of LYN kinase
- >Affinity enrichment of ORFeome using GST-Lyn or GST/mutated (=bait)
- >Illumina sequencing
- >Results: number of known/new LYN kinase partners identified

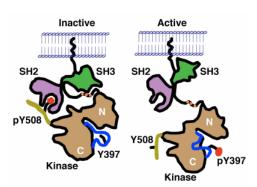


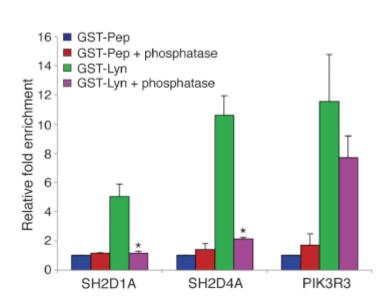

LYN kinase-Interacting partners

Validation

>qPCR:

- -ORF specific primers
- -2 known LYN binding partners
- >Western Blot
- -v5-His tagged candidate protein
- -anti-V5 antibody detection

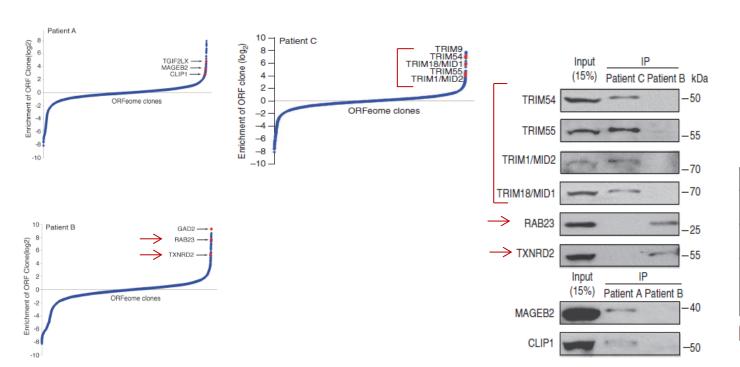

LYN kinase-Interacting partners


- Ranking of the LYN interacting candidate
- Enrichment of SH2-domain containing proteins (p-value: 0.0.098)
- >Role of LYN autophosphorylation in interacting with SH2 domains
- >Phosphatase treatment of immobilized GST-Lyn
- >Abolish the binding of:

SH2D1A and SH2D4

>Evidence for an additional binding

domain for PIK3R3



LYN kinase-Autoantibodies

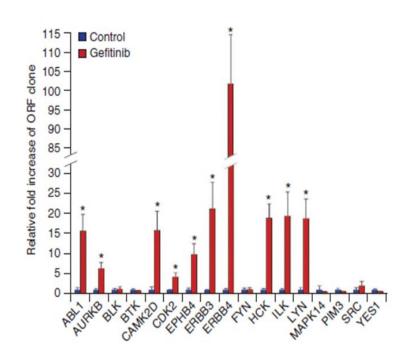
Ability of PLATO to identify protein target of antibodies from patients with autoimmune disease

- >cerebrospinal fluid of patients with paraneoplastic neurological disorder
- >Results: -Detection/confirmation of reactive antigens by IP and WB
 - -Heat map: Patients specificity

ORF PND	Α	В	С
TGIF2LX	26.3	6.0	1.1
MAGEB2	13.2	0.4	0.9
CLIP1	6.8	0.1	1.3
GAD2	40.3	613.3	7.0
RAB23	17.9	170.6	56.3
TXNRD2	1.3	38.1	2.8
TRIM9	3.0	2.8	126.0
TRIM54	0.2	3.4	112.3
TRIM55	1.3	0.9	20.7
TRIM1/MID2	1.1	1.5	20.4
TRIM18/MID1	25.5	0.3	53.2
Enrichment			
1 2 0 2 2 0 0			

LYN kinase-small molecule

High limitation of small molecule interaction with protein:


- >cell extract (abundancy of protein)
- >biaised of MS analysis towards the highly produced proteins

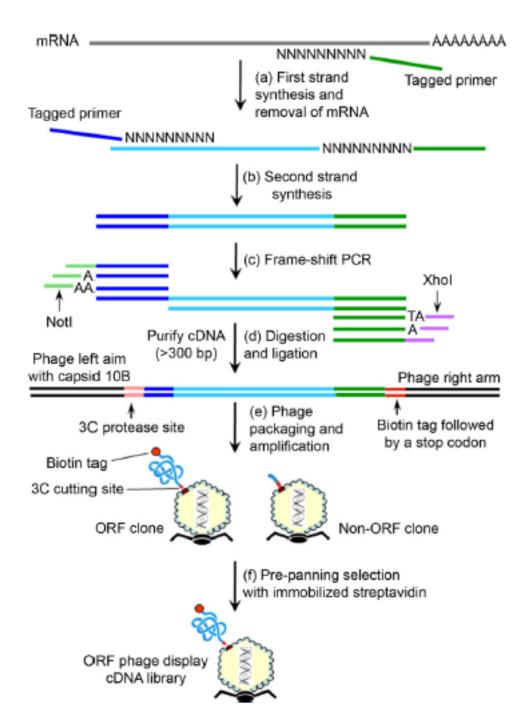
Gefitinib:

- >Inhibitor of EGFR tyrosine kinase domain
- >Used in breast, lung cancer
- >Interact with the ATP binding pocket

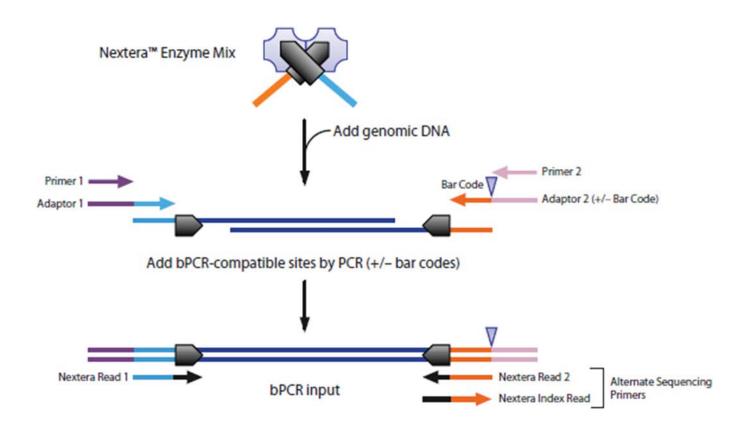
EGFR

Results: 10/17 predicted targets

Summary


- Advantages: -Minimal constraints of ribosome display on
- >Lengths and composition of protein
 - -Multiplexed sequencing reduce cost
 - -Compatible with large number of samples and

with automation


- -Broad utility
- <u>Limitations</u>: -Incomplete ORFeome collection
- >constant improvement: quality, completeness, availability
 - -Lack of protein post-translational modifications
 - -Low display efficiency of large proteins ORF
- -Aggregation of proteins requiring host cellular machinery for proper folding
 - -Affinity purification sensitive
- -non specific binding of protein containing nucleic acid domain as bait

Thanks for your attention

Deep sequencing-Illumina

