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HTS process

A typical HTS process
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Application

s Assay read-out: fluorescence, luminescence or absorbance
* Positive, negative and reference controls

# Cell density, media conditions (cell-based)

s Protein concentration, buffer conditions (biochemical)

# Incubation times, signal stability, assay tolerance to solvent

e Test sample: pooled or individual siRNA or compound
s Screen at single copy

# Deconvolution: 1 siRNA/well

(when pooled siRNAs are used in primary screen)
e Dose-response (small molecule)

e Screen in replicates

# Small scale screening
* On-bench follow-up experiments



Robust statistics: data distribution

* One of the main assumptions when analyzing HTS data is that the data
Is normally distributed. Or it complies with the central limit theorem:
under certain (fairly common) conditions, the sum of many random
variables will have an approximately normal distribution.

« Log transformations are often applied to the data in the pre-
processing stage to achieve more symmetrically distributed data
around the mean as in a normal distribution.

— Especially for cell growth assays: to represent the relationship between

variables in a more linear way; to make an efficient use of the assay quality
assessment parameters.



Robust statistics: outliers

In HTS practices, the presence of outliers is generally experienced.
« Outliers: data points that do not fall within the range of the rest of the data.

* Outliers in control wells can be easily identified, but in the test sample may
be misinterpreted as real “hits” instead of random errors.

Two approaches for statistical analysis of data sets to remove outliers:

1) Classical statistics: use the truncated (or trimmed) mean, a statistical
measure of central tendency.

2) Robust statistics: use the median and median absolute deviation (MAD).
Median + k MAD, where MAD = median; ( |X;-median;(X;)| )

— K is a constant scale factor depending on the distribution. For normally
distributed data, K is taken to be 1/(®1(3/4)) =1.4826
— more popular in HTS data analysis for its insensitivity to outliers.

— robust to outliers in RNAI data.
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Normalization for assay variability

Assay variability: data variability between plates due to random
fluctuations in assay performance, which is separated from the systematic
errors that can be linked to a known reason.

Two main approaches for normalization of HTS data:

1) Controls-based: positive and negative controls are used as the upper
(100%) and lower (0%) bounds of the assay activity. The activities of
the test samples are calculated with respect to these values.

2) Non-controls-based: most of the samples are assumed to be inactive
In order to serve as their own “negative controls”.

? However, may be misleading when the majority of the wells in a plate
consist of true “hits” (e.g., screening a library of bioactive molecules) or
SiRNAs (e.g., focused library).



Normalization for assay variability
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Quality control methods

Quality control (QC): to determine if the data collected from each plate
meet the minimum quality requirements.
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Quality control methods

» Signal-to-background (S/B):

e Signal-to-noise (S/N):

mean(C__,)
-~ pos
S/B= mean Cﬂeg}
) mean(CP o )-mean(C neg)
or MN° ' |

\j Std(CPOS ) +Std(cneg )

— Applied for the establishment of an assay.

— Both S/B and S/N are considered weak parameters to represent dynamic
signal range for an HTS and are rarely used.



Quality control methods

The most widely used QC criterion in HTS:

« Z'-factor: The separation between positive (C,,) and negative (C,)
controls is calculated as a measure of the signal range of a particular
assay in a single plate.

3 X Std(Cpos) +3 X Std(Cneg)

Imean(C,,,) - mean(C

neg)l
— Z'-factor has its basis on normality assumption, and the use of 3x std of the
mean of the group comes from the 99.73% confidence limit.

— The magnitude of the Z'-factor does not necessarily correlate with the hit
confirmation rates.

— Require very strong controls to get “good” Z'-factor, thus more applicable for
small-molecule screens.



Quality control methods

« Z-factor: The modified version of the Z'-factor, where the mean and std
of the negative control are substituted with the ones for the test samples

(Sall)'
3 x std(C,gs) + 3 X Std(S,)

|mean(Cpos) - mean(sall)|

Z=1-

— In a focused library, in which many possible “hits” are clustered in certain
plates, Z-factor would not be an appropriate QC parameter.

The Z' (or Z) parameter based QC criteria:

0.5<Z'<1, avery good assay.
0 <Z'< 0.5, an acceptable assay.
Z' < 0, an unacceptable assay.



Quality control methods

o Strictly standardized mean difference (SSMD): the ratio between the
difference of the means and the standard deviation of the difference
between controls.

mean(C,,,) - mean(C,)

SSMD =
\ Std(Cpo)? + StA(Creg)?

— SSMD was developed primarily for RNAI screens with a solid probabilistic
and statistical basis.

— SSMD has both clear original and probability meanings for evaluating the
differentiation between positive and negative controls.

— the SSMD-based QC criteria obtain consistent QC results for multiple
positive controls with different effect sizes.



Quality control methods

Table 1.

a Positive Control in an Assay under Two Situations

SSMD-Based QC Criteria in RNAi HTS Assays Taking into Account Effect Size of

Cpos > Cneg Situation I The intensity of a positive control is theoretically greater than that of a negative reference.

Criterion Ia:
For a Moderate

Criterion 1b:
For a Fairly

Criterion Ic:
For a Strong

Criterion Id:
For a Very Strong

Quality Types Control Strong Control Control Control

Excellent B2 B=3 B>4.7 B> 6.67

Good 2>B=1 3>B=2 47>p=3 6.67 > =47

Inferior 1>B>05 25821 3>B>2 47>B>3

Poor Be:U.S ﬁe:l B<2 B-—-:S
Cpos < Cn eg Situation Il The intensity of a positive control is theoretically less than that of a negative reference.

Criterion Ila:
For a Moderate

Criterion 1Ib: For
a Fairly Strong

Criterion Ilc:
For a Strong

Criterion 11d:
For a Very Strong

Quality Types Control Control Control Control
Excellent B2 p<-3 <47 B<—6.67
Good 2 <Pp=-1 3<pc2 47 <p<-3 —6.67<P<—47
Inferior 1<B<-05 2 <pel 3<Bc2 47<P<-3
Poor E’:}—O.S ﬁ}—l |§-:=-—2 f}::—}

B" denotes estimated strictly standardized mean difference (SSMD) value.

Journal of Biomolecular Screening.

2008 Jun;13(5):363-77.



Quality control methods

Table 2. Strategies for Quality Controls in an HTS
Experiment with One or Two Positive Controls

Strategy 1: Using | positive control,
a plate passes QC if it has good or excellent quality;
a plate fails QC if it has poor or inferior quality.
Strategy 2: Using 2 positive controls,
a plate passes QC if it has good or excellent quality in both positive
controls;
a plate fails QC if it has inferior or poor quality in both positive controls:
depending on experimental need and cost, a plate may pass or fail QC if it
has good or excellent quality in 1 positive control and inferior or poor
quality in the other positive control.

Journal of Biomolecular Screening. 2008 Jun;13(5):363-77.
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“Hit” selection in primary screen

“Hit”: test sample with value above or below the cutoff.

Erroneous assessment of “hits” and “non-hits” is likely, highly depending on

— the specificity and sensitivity of an HT assay.
— the analysis methods used for “hit” selection.

False discovery rate (FDR): the ratio of false discoveries to the total
number of discoveries.

— The FDR can be inherently reduced by selection of the appropriate controls for
screen quality assessment as well as for “hit” selection.



“Hit” selection in primary screen

The “hit” selection methods for primary HTS:

e Percent inhibition cut-off
— preferred for small molecule screens with strong controls.

e SSMD and robust SSMD
— Mean and std in the standard SSMD formula is substituted with
median and MAD in the robust version.

e Mean %k std

« Median = k MAD
— robust to outliers and has been shown to identify weak hits in RNAI
data more effectively than mean £ k std while still capturing the
strong hits and controlling false positives.



“Hit” selection in confirmatory screen

The “hit” selection methods for confirmatory screen:

« Dose-response analysis

— Defined by top asymptote (maximal response), bottom asymptote (baseline
response), slope (Hill slope ), and the EC., value.

. TB
signal=B+—w—
— Common used in small molecule screens. 1+(. = ]
e SSMD
 Multiple t-tests p-value:

_ . in replicates to statistically calculate the
* Redundant siRNA activity (RSA) ~ significance of the sample activity in

 Rank product relation to a negative reference group.
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Features of RNAI and small-molecule HTS data

Comparison of existing datasets from more than 19 optimized siRNA screens and more
than 13 mammalian cell-based small-molecule screens:

Assay Parameter Small-Molecule Assays | siRNA Assays

Median Signal to Background 5.6 (n=14) 2.9 (n=18)

(S/B; Note 1)

Median Coefficient of Variation 13.4% (n=21) 26.5% (n=25)

(CV; Note 2)

Normality of Data (Note 3) 5% Normally Distributed 26% Normally
(n=21) Distributed (n=25)

Z'-factor Generally > 0.5 Generally < 0.5

— Screens were carried out at the ICCB-Longwood Screening Facility at Harvard Medical School.

— 384-well format. sSiIRNA screen with 6 positive and 4 negative controls per plate. Small-molecule
screen with 6 positive and 16 negative controls per plate.

In general, the siRNA screens were less robust by these standard measures
than small-molecule screens.

Nature methods. 2009 Aug;6(8):569-75.



Differences between RNAI and small molecule HTS

¢ Library design:

In theory, most siRNA reagents in a genome-scale library should have an
expressed cellular target and knockdown of each target may have
physiological effects.

RNAI reagents have a higher intrinsic probability for impacting the overall
network biology.

In contrast, most compounds in small-molecule screening libraries have no
effect on cell pathways because they lack cellular targets and are de facto
negative controls.



Differences between RNAI and small molecule HTS

s Transfection:
 Even under well-controlled conditions, the transfection process, especially
transfection efficiency, is a major source of variability for SIRNA screens.

« Transfection also causes cell stress and can affect cell viability, which may
have variable and indirect phenotypic effects in cellular assays.



Differences between RNAI and small molecule HTS

+» Kinetics and mechanism of RNAI action:

 RNAI reagents generally require 48—72 hours for maximal effect, whereas
small molecules can directly affect their protein targets within hours.

— the increased time between cell plating and assay endpoints leads to
greater impact of cell culture and environmental variation on
phenotypes and more assay variability.

« The “window” of maximal RNAI effect likely varies for each gene, but typically
a single endpoint is chosen for a screening assay.

— Assaying too early may produce a false negative.
— Assaying too late may lead to false positives because of downstream effects.



Differences between RNAI and small molecule HTS

“* Number and quality of controls:

RNAIi positive controls generally have weaker effects (variations in
transfection efficiencies) than small-molecule positive controls.

Small-molecule screens use vehicle-only wells as negative controls, no such
universal negative control exists for siRNA screens. Even ‘nontargeting’
SiRNA controls may exhibit off-target effects in some cell lines.

Sequence-specific off-target effects of RNAI resulting from partial sequence
complementarity between siRNA and mRNA complicate interpretation of

RNAI experiments. (mechanisms of off-target effects are not yet completely
understood)
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Successful data analysis of RNAI screening depends critically on:

« The careful experimental design and assay development before the primary
screen.

» Plate layout and placement of control reagents.
* Whole genomes can be carried out in <30,000 wells and thus can be performed

routinely in duplicate or higher replicate numbers to decrease both false positive
and false negative rates.



Data triage

« Plate visualization: an effective technique for uncovering undesirable
patterns that might indicate technical problems.

identification of potential problems as they occur.
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Normalization

Normalization
Methods

Formula

Advantages

Disadvantages

% of control mean

% of sample median

% = sample signal *100
mean of control

% = sample signal * 100

median of samples

* easy to calculate
 easy to interpret
* biologists are accustomed
to this type of normalization

* easy to calculate

» easy to interpret

* not very sensitive to outliers
* biologists are accustomed
to this type of normalization

* does not need many
replicates of controls,
because use samples as ‘de
facto’ negative controls

* very sensitive to outliers

* need many replicates of controls
» does not incorporate
information on control variation

» does not adjust for positional
effects within plates

» does not incorporate
information on sample variation
» does not adjust for positional
effects within plates

Nature methods. 2009 Aug;6(8):569-75.



Normalization

Normalization
Methods

Formula

Advantages

Disadvantages

Z-Score

robust z-score
(MAD z-score)

z = sample value - sample mean
sample standard deviation

z = sample value — sample median
sample median absolute deviation

» easy to calculate

e incorporates information on
sample variation

» easy to use results in hit
identification : typically use
threshold of z>=2 or 3

» does not need many
replicates of controls
because use samples as ‘de
facto’ negative controls

e easy to calculate

e incorporates information on
sample variation

* not very sensitive to
outliers

* does not need many
replicates of controls
because use samples as ‘de
facto’ negative controls

» can be sensitive to outliers
* plate-based z scores can
be skewed if hits are
unevenly distributed on
plates (common)

» does not adjust for
positional effects within
plates

» does not adjust for
positional effects within
plates

* some biologists may not
be accustomed this type of
normalization

Nature methods. 2009 Aug;6(8):569-75.



Calculation of quality metrics

Z'-factor Z'=1-(3*SD of h.v. control + 3*SD of |.v. control) < easy to calculate « can get “good” Z'-factor
|[h.v. control mean —|.v. control mean| » takes dynamic range  using very strong controls,
and data variation into  but this may not be
(SD, Standard Deviation account. representative of positives
h.v., high-value; l.v., low-value.) from screen

» used extensively for small
molecule assays; may need
to adjust thresholds for
SiRNA screens

Z-factor Z =1-(3*SD of sample + 3*SD of control) - easy to calculate * used extensively for small
|[sample mean — control mean|  takes signal dynamic  molecule assays; may need
range and data to adjust thresholds for

variation into account SiRNA screens

Nature methods. 2009 Aug;6(8):569-75.



Calculation of quality metrics

I\agﬁlilctzi Formula Advantages Disadvantages
SSMD SSMD = h.v. control mean —|.v. control mean * easy to calculate * not yet as widely
(Strictly \(SD?2 of h.v. control + SD? of |.v. control) e takes dynamic range recognized as Z/Z'-factor
Standardized and data variation into
Mean (SD, Standard Deviation account
Difference) h.v., high-value; l.v., low-value.) * less conservative
estimator than Z/Z’-
factor

* has rigorous statistical
estimator for non-
normal data

 different thresholds
available for different
control strengths

Nature methods. 2009 Aug;6(8):569-75.



Hit identification

Strategies

Formula

Advantages

Disadvantages

Mean =+ k std

Median + k MAD
(Median Absolute
Deviation)

Hit with increased activity = any sample
whose value is >= sample mean + k std;

Hit with decreased activity = any sample
whose value is <= sample mean — k std

Hit with increased activity = any sample
whose value is >= sample median + k
MADs;

Hit with decreased activity = any sample
whose value is <= sample median — k
MADs

* easy to calculate
e easily linked to hit
p-values

* easy to calculate
 can identify weaker
hits

* not very sensitive
to outliers

* sensitive to outliers

e can miss weak positives

* requires multiple comparison
corrections if using p-values

* not easily linked to hit p-
values

Nature methods. 2009 Aug;6(8):569-75.



Hit identification

Multiple t-tests

SSMD

(Strictly standardized
mean difference)

RSA
(Redundant siRNA
activity)

Hit = any reagent for which t-test
result between samples at two
conditions < threshold (usually p
=0.050r p =0.01)

Appropriate equations depend
on whether goal is control of
rates of false negatives, false
positives or both

Iterative ranking algorithm that
cannot be reduced to a single
equation

* easy to calculate * requires triplicates, at minimum
* provides hit p-values * sensitive to outliers
e inappropriate if data is not
normally distributed
* requires multiple comparison
corrections of p-values

* allows control of both * not available in most analysis
false positive and false software
negative rate * not intuitive for many biologists

* linked to rigorous
probability interpretation

e can identify weaker hits e difficult to calculate

* not sensitive to outliers  * may have limited utility for
 provides hit p-values pool-based screens

* may help reduce false-

positives due to off-target

effects of single reagents

Nature methods. 2009 Aug;6(8):569-75.



Part-3:

case study (paper 1)

PN AR

Unique drug screening approach for prion diseases
identifies tacrolimus and astemizole as
antiprion agents

Yervand Eduard Karapetyan®'?, Gian Franco Sferrazza™'?, Minghai Zhou®, Gregory Ottenberg™?, Timothy Spicer®,
Peter Chase®, Mohammad Fallahi€, Peter Hodder®, Charles Weissmann®*, and Corinne Ida Lasmézas™*

*Department of Infectious Diseases, PLead Identification, and ‘Information Tech nology and Informatics, The Scripps Research Institute, Scripps Florida, Jupiter,
FL 33458

Contributed by Charles Weissmann, March 4, 2013 (sent for review January 31, 2012)

Prion diseases are characterized by the accumulation, in brain and
lymphoid tissue of PrP>¢, a misfolded, aggregated form of the host
prion protein (PrP¢).

Because PrPC¢ is necessary for prion replication, this paper applied
HTS for compounds that decrease PrPC¢ expression on living cell
surface.



Features of this screen

 Primary assay: PrP-FEHTA (FRET-based high throughput assay)
* Cell based: LD9 cells (a subclone of L929 fibroblasts)

« Componds: US Drug Collection that comprises 1,280 drugs approved
for use in humans.

 Normalization: % of control mean
— normalized to compound solvent control.

e QC: Z'-factor

— Positive control: maximum signal, LD9 cells or LD9 cells + compound solvent
DMSO

— Negative control: minimum signal, Hpl PrP% cells or LD9 cells +

pharmacological control brefeldine A (BFA, blocks progression of proteins from the ER to
the Golgi apparatus)

« Hit selection: threshold set at <50% PrP¢ expression and <10% toxicity.



Assay development

PrP-FEHTA: FRET-enabled high throughput assay, which uses two
antibodies recognizing distinct domains of PrP¢ for quantification of a
cell surface protein.
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Assay development

96-well format 384-well format
A B C
PrP detection by cell number BFA dose-response PrP detection by cell number
180 140 250
160
120
140 200 ¥ 1D9
100
X120 ® D9 ®LD9 150 ¥ LD9 + DMSO
3] | !
.§100 80 KO LD9 + BFA
80
60 100
60
40 .
40 50
20 - 20
o - W TR PN PREFEES W M
20K 80K 40K+BFA 0 2 4
Cell number Dose of BFA (ug/ml) Cell number

PrP-FEHTA optimization:

— (A and B) Optimization of LD9 cell density and pharmacological control BFA.

— (A) Z' values were 0.7 for 20,000, 0.6 for 40,000, and 0.8 for 80,000 LD9 cells (LD9 cells providing the maximal,
PrP KO cells the minimal signal intensity). Z' was 0.7 when 40,000 LD9 cells provided the maximal signal and
40,000 BFA-treated LD9 cells the minimal signal (4 ug/mL BFA).

— (B) BFA (4 and 8 ug/mL) reduced the PrP signal to background.

— (C) Optimization of cell density and DMSO tolerance in the 384-well format. Z' values were calculated for LD9+DMSO
versus LD9+BFA and were equal to 0.4 (1K), 0.6 (5K), and 0.8 (10K).



Astemizole

Tacrolimus

Primary screen
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Cutoffs are indicated by dotted lines: < 50% PrP¢ expression, <10% toxicity.

The screen yielded 9 hits (0.7%) from 1,280 drug compounds.



Hit validation

They selected two hits, tacrolimus
and astemizole, based on their
activity in orthogonal assays.

Tacrolimus )
] A
— |___ ) - K
..".. |. : A d i
e =
0 Ve
‘rl o )
Astemizole ; :
Tacrolimus Astemizole

Hit validation by immunofluorescence on neuroblastoma cells and high-content

analysis:

N2a cells were treated with the control DMSO (0.5%) or with the drug (20 uM) for 24h.
PrP staining with D18 mAb on living cells, postfixation, and epifluorescence analysis.



Tacrolimus and astemizole inhibit prion replication in cell culture
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Cells were analyzed for pK-resistant PrPS¢ by Western blot
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6.7uM, strongly inhibited the
replication of both RML and 22L
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both strains at 2uM.
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Proposed mechanism of action of tacrolimus and astemizole

Membrane Intracellular
Tac Ast CTRL Tac AstCTRL

37kDa
— 25kDa

. 20kDa

_ 15kDa

PrP mRNA

1.20
1.00
0.80
0.60
0.40
0.20
0.00

Tac Ast CTRL

Drug Treatment

Both cell surface PrP¢ (biotinylated fraction) and intracellular
PrPC¢ (unbiotinylated fraction) were analyzed by Western blot.

Tac Ast CTRL
40pg 20pug  40ug 20ug 40pg

20pg

- 15kDa
.-.-.-m .

—— e —— — GAPDH
Band Ratio
Treatment Protein density LC3-lI/ .
Tac LC3-l 58.9 0.41
LC3-ll 24.2
Ast LC3-l 87.6 0.93
LC3-I 814
CTRL LC3- 67.9 0.56
LC3-II 37.7

e Tacrolimus treatment (20uM) reduced both
membrane and intracellular PrP¢ by >70%, but
MRNA levels were unaffected. — tacrolimus
inhibits PrPC translation.

e Astemizole treatment (2uM) didn’'t significantly
affect the surface and intracellular levels of PrP¢ as
well as mRNA. — astemizole, at the prion
inhibitory dose, inhibited prion replication by a
mechanism independent of PrP expression.

Tacrolimus did not significantly modify the LC3-1l/I ratio.
—The antiprion effect of tacrolimus is linked to a
nontranscriptional regulation of PrP steady-state levels.

The ratio doubled after astemizole treatment, indicating
autophagy induction. — The antiprion effect of
astemizole acts by enhancing autophagic function and
thereby, prion clearance.

An indicator of autophagy induction: the conversion of the cytosolic
protein LC3-I to the conjugated, autophagosome-bound form LC3-II



Therapeutic effect of astemizole in prion-infected mice
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Mice were intracerebrally infected with RML prions and treated from 20 to 50d
after infection by i.p. injection of tacrolimus at 1.5 mg/kg or astemizole at 3 mg/kg.

e The astemizole-treated mice showed a clear increase in survival time.

* No increase in survival times was observed in the tacrolimus-treated group.



_Part-3: case study (paper 2)
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 Recent studies of the Parkinson’s disease associated genes PINK1 and
PARK2 indicate that they may act in a quality control pathway preventing
the accumulation of dysfunctional mitochondria.

« This paper elucidated regulators that have an impact on parkin
translocation to damaged mitochondria with genome-wide SiRNA screens
coupled to high-content microscopy.



Strategy
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 PINK1 (positive siRNA control) protects cells from stress-induced
mitochondrial dysfunction, by recruiting Parkin protein to bind to depolarized
mitochondria to induce autophagy (mitophagy) of those mitochondria.

1) Hela cells stably expressing
 GFP-Parkin (AcGFP1-Parkin fusion protein)
* mito-dsRed (a mitochondrial-targeted red fluorescent protein)

2) siRNA treatment on cells for 48h, in 384-well format.

3) CCCP (carbonyl cyanidem-chlorophenyl hydrazine) treatment on cells for 2.5h, for chemically
depolarizing of mitochondria.

— Introduce Parkin translocation to mitochondria.



Features of this screen

 Primary assay: automated high-content microscopy assay
 Cell based: HelLa cells

e Genome wide human siRNA libraries:
1) Ambion non-pooled library: 3 unique siRNA per gene
2) Dharmacon pooled library: pool of 4 siRNA per gene
In total, there were 83,000 siRNA targeting 21,993 genes

 Normalization:
1) Normalization of raw data to negative control
2) MAD Z-score of normalized data
3) Log transformation of MAD Z-score to remove bias

e QC: Z'-factor
— Positive control: Pink1l siRNA
— Negative control: non-target siRNA
— Plate with a Z'<0.5 was repeated.

e Hit selection:
1) Toxicity filter: cell count MAD Z-score
2) Mitochondrial filter: mitochondrial density MAD Z-score
3) Candidate selection: parkin translocation MAD Z-score



Overview of data analysis workflow

- Raw translocation measurements

High Content Analysis - Raw cell counts
- Raw mitochondrial intensity measurements

/ Plate-level data \ -
- Plate control normalized translocation measurements

| |
L - Plate control normalized cell counts
- Plate control normalized mitochondrial intensity
measurements
| — - Conversion of normalized translocation, cell count, and

Control Control mitochondrial intensity measurements from screen-level
Nomalization MNarraiizatcn datasets to median absolute deviation (MAD) Z-scores
Screen-level data - Log transformation translocation MAD Z-scores to
remove bias towards inhibitors in screen-level dataset
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Toxicity Filter
(using nuclei count MAD Z-scores)




Overview of data analysis workflow
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Candidate gene selection
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Representative images of parkin translocation assay.
NTC (non-targeting control), PINK1 (inhibited translocation) and LMAN1
(accelerated translocation) siRNA transfected cells from genome-wide screens.



Candidate gene selection
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» Filters: active siRNAs were required to maintain a cell count of MAD>-2 to
remove toxic phenotypes and a “mitochondrial stain intensity” MAD>-2 to
remove mitochondria depleting phenotypes.

« Candidate selection criteria:
— non-pooled: at least two siRNAs from the data set were active based on
phenotypic evaluation of parkin translocation (£1.5 MAD).
— pooled: thresholds were set to yield similar numbers of genes as the non-
pooled screen (~ £2 MAD).



Candidate gene selection

Primary screen Ambior Dharmacor Overla
4 SIRNA library | sSIRNA library P

Positive regulator 290 genes 340 genes 14 genes
(inhibitory siRNA phenotypes) (1.3%) (1.5%)
Negative regulator 418 genes 367 genes 10 genes

(accelerating siRNA phenotypes) (2_30/0) (2_2%)



Validation of candidate gene with follow-up secondary screen

Active follow-  Follow-up category

bpsiRNAs 1 2 3 4
3-4 6 3 1 11

2 12 7 2 25

1 4 5 3 13

0 4 1 0 8

Total genes: 26 16 6 af =105
Aggregate gene reconfirmation activity

3-4 siRNAs o4 (20%)
active

ssed
I
(e))
\l

2 siBNAs 46 {44%}
active

" 1SIRNA e oa0r Low
active 25 (23%) confidence

0 siRNAs
active

38

13 (13%) Fail

Validation screen used 4 additional
SIRNASs from a different vendor.

Confirmation of knockdown by qPCR.

Knockout (TALENs technology) to
confirm the effects:
— TOMMTY: essential for stabilizing PINK1 on

the outer mitochondrial membrane
following mitochondrial damage.

— HSPALL: role in the regulation of parkin
translocation.



HTS facility

Agilent BioCel 1800 (siRNA
preparation and cell culture)

BioTek EL406 dispenser (cell
fixing and washing for imaging)

Thermo Scientific WellMate
dispenser (cell seeding and splitting)

Molecular Devices ImageXpress
Micro (image analysis)



Summary & Future directions

« HTS is a comprehensive process to discover new drug targets using
SIRNA and drug candidates from small molecule libraries.

« High-throughput RNAI offers a wealth of exciting new data but also
provides new challenges in the statistical interpretation.

« Statistical techniques and software for these HTS assays are still in their
infancy; no doubt this area will see considerable development effort in
the coming years.

It should be emphasized that rigorous secondary screening is
necessary to validate primary screen findings. Even the best statistics
cannot establish the biological importance of genes identified as primary
hits.



Math is just a
horrigle thing, But..
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